
1

Resilience of Delay-sensitive Services with
Transport-layer Monitoring in SD-WAN

Sebastian Troia, Marco Mazzara, Marco Savi, Ligia Maria Moreira Zorello, and Guido Maier

Abstract—Today, more and more enterprises are embarking
on a digital transformation where most of their applications are
hosted in the Cloud. As a result, a reliable Wide Area Network
(WAN) has become a primary need to interconnect their dis-
tributed branch offices and data centers that accommodate those
applications. Software-Defined Wide Area Network (SD-WAN)
represents the most promising technology solution for next-
generation enterprise networks, being able to increase network
agility and reduce costs. In this paper, we present an experimental
SD-WAN solution capable of running and optimizing delay-
sensitive high-priority services, such as real-time video streaming,
while minimizing downtime caused by network failures. This
solution comprises a monitoring and a traffic engineering system
for SD-WAN. The first consists of a Transport-layer Passive
Monitoring (TPM) system based on extended Berkeley Packet
Filter (eBPF) technology with the goal of monitoring TCP flows;
the second consists of an application, running inside the SD-WAN
controller, with the goal of orchestrating the network traffic in
consideration of the monitoring measurements by ensuring rapid
recovery and resilience in case of unexpected congestion events.
We validate our solution over two SD-WAN testbeds: the first
is hosted in our laboratory at Politecnico di Milano, while the
second is deployed in a municipal network of an Italian city.
Results show that our SD-WAN solution can increase the overall
service availability while meeting the stringent QoS requirements
of delay-sensitive services.

Index Terms—Software Defined Wide Area Network (SD-
WAN), Software Defined Networking (SDN), Edge Networking,
Datacenter Networking, Traffic Engineering, TCP, Network Mon-
itoring, eBPF.

I. INTRODUCTION

Digital transformation is driving organizations to reinvent
the way they do business. They are launching products and ser-
vices to customers faster, thanks to Cloud-based technologies,
such as web hosting services. However, traditional enterprise
networks (ENs) are not suited to a Cloud-centric world and
are struggling to keep up with this change. Many of today’s
wide area network (WAN) architectures rely primarily on a
traditional hub-and-spoke architecture that connects sites to a
limited number of regional or private data centers, making it
difficult to manage Cloud migration or cope with broadband
applications, such as videoconferencing or real-time video
streaming.

Sebastian Troia and Guido Maier are with the Dipartimento di Elettronica,
Informazione e Bioingegneria (DEIB), Politecnico di Milano and SWAN
networks, Milan, Italy. Marco Mazzara and Ligia Maria Moreira Zorello are
with the Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB),
Politecnico di Milano, Milan, Italy. Marco Savi is with the Department of In-
formatics, Systems and Communication, University of Milano-Bicocca, Milan,
Italy. Corresponding author e-mail: sebastian.troia@polimi.it. A preliminary
version of this paper appeared in [1], presented at IEEE MeditCom in 2021.

Decades ago, the geographical distance between sites of
enterprises was bridged by using dedicated lines leased from
network operators. Usually, such leased lines had high costs
and could guarantee a limited network bandwidth [2]. As a
consequence, many different technologies have been proposed
to create the inter-site connections of ENs as an overlay
over public WANs, such as Asynchronous Transfer Mode
(ATM), Frame Relay (FR) and Multi-Protocol Label Switching
(MPLS). In particular, the most recent MPLS is currently
commonly adopted for its capability of guaranteeing Quality of
Service (QoS) according to Service Level Agreements (SLAs)
by setting up Label-Switched Paths (LSPs) through the IP
network. On the other hand, the operational complexity of
MPLS is directly related to the number of branch offices.
Although MPLS can be regarded as a milestone in ENs, its
high cost and complexity have recently pushed companies to
seek hybrid WAN solutions, which simply add a broadband
Internet connection or virtual private networks (VPNs) to the
current EN architecture [3]. This solution can improve the
user experience and Cloud access, but it is cumbersome to
configure and totally unreliable to meet changing needs.

Software-Defined Wide Area Network (SD-WAN) can pro-
vide the agility and flexibility needed to support the afore-
mentioned digital transformation. SD-WAN offers numerous
advantages in terms of high network agility, cost savings, high
availability, easier and safer management of the EN. Based
on a software-defined architecture, SD-WAN delegates the
control and management to a centralized controller connected
uniquely to the edge devices, or Customer Premises Equipment
(CPE): this means that there is no need to have direct access to
the WAN internal devices (e.g. providers routers and switches)
to operate an SD-WAN; as such, VPNs over best-effort Internet
connections can be used to ensure a certain quality level to
applications’ traffic.

Moreover, one of the primary benefits of an SD-WAN is
its ability to guarantee application-aware traffic routing, that
is, it can dynamically allocate network resources and capacity
to meet different IT services and applications. For instance,
delay-sensitive applications (such as real-time video stream-
ing) require that a certain QoS, in accordance to specific SLAs,
is guaranteed to run correctly. SD-WAN allows to monitor
their performance and dynamically route the applications’
traffic to meet such SLAs. Indeed, if an application’s packet
routing over an Internet-based VPN cannot guarantee meeting
its SLA, the SD-WAN has also the capability to reroute packets
over a guaranteed Internet connection such as the one provided
by MPLS. Or, if a low-priority application is consuming too
much bandwidth over the MPLS connection, the SD-WAN can



2

reroute packets via an Internet-based VPN to free capacity
for higher-priority traffic. The goal is to ensure that each
application has the most appropriate quality path to provide
optimal customer experience. In other words, enterprises can
orchestrate their traffic in consideration of the monitoring mea-
surements on network and service performance, such as packet
delay, loss, jitter, and service requirements. Additionally, SD-
WAN supports a new way of managing the application traffic
thanks to the possibility of instructing the CPEs on the basis of
heterogeneous information such as the position of the CPEs,
the type of services, characteristics of the flows (TCP, UDP),
etc.

However, one question arises: to what extent is SD-WAN
able to ensure guaranteed service availability by exploiting
broadband Internet? This is the problem we investigate with
our work. Given the small number of independent studies we
found in literature on such a topic, our opinion is that the
question is still largely open. In order to fill this gap, in
this work we developed an open-source SD-WAN solution
based on an innovative monitoring system with the aim of
guaranteeing fast recovery and network resilience in the case
of network failures.

Specifically, in this paper we focus on optimizing delay-
sensitive services, such as real-time video streaming and online
gaming. These services continue to be in huge demand in
today’s homes, as such, by 2022 video streaming will account
for 82% of all Internet traffic in the world [4]. Nowadays,
most of the video streaming applications are based on HTTP/2
[5], which has been widely used for providing uninterrupted
video streaming services over harsh network conditions and
heterogeneous devices [6]. In addition, it can easily traverse
firewalls and reuse the already deployed HTTP infrastructure
such as HTTP servers, HTTP proxies, and Content Delivery
Network (CDN) nodes [7]. Given the fact that HTTP/2 relies
on TCP, the idea is to build an SD-WAN solution able to
monitor and collect real-time transport network information
acquired directly from the servers (or hosts) that generate the
network traffic. To do so, we exploited extended Berkeley
Packet Filter (eBPF) [8], a novel technology that can run
programs into the Linux kernel without changing kernel source
code or loading kernel modules. Thanks to this technology,
we are able to code specific programs from the user space to
monitor different parameters of transport network protocols,
such as the number of TCP retransmissions of traffic flows.
This allows us to access network traffic information from the
user space quickly and in real time.

In our previous work in [1], we presented a demo-test
running an experimental SD-WAN solution, by means of
eBPF, capable of recovering a video streaming service affected
by a network failure. Thanks to a first implementation of eBPF,
we could quickly identify TCP retransmissions and recover the
video flow in real-time.

In this work, we develop an application inside an SD-
WAN controller based on ONOS [9], called SD-WAN Traffic
Engineering (TE), which interacts with our monitoring sys-
tem to ensure the best availability to delay-sensitive services
and guarantee network resilience. TE is crucial for network
availability and reliability. Enterprises can use TE algorithms

to orchestrate their traffic among the CPEs in considera-
tion of the monitoring measurements of WAN performance,
such as packet delay, loss, jitter, and service requirements.
We performed experimental measurements through two real
testbeds to validate our solution. The first one is hosted in
our laboratory at Politecnico di Milano, while the second has
been developed in a municipal network of an Italian city.
Specifically, in the latter case we adopted our solution to
connect the city hall to a remote office. Experimental results
demonstrate the capability of our proposal to increase the
overall SD-WAN performance by providing fast recovery in
case of congestion events and link failures.

With respect to our previous work in [1], we improve our
solution and make the following contributions:

• Design and implementation of a Transport-layer Passive
Monitoring (TPM) system based on eBPF with the goal
of monitoring all TCP flows;

• Development of a traffic engineering application, called
SD-WAN TE, running inside the ONOS controller. This
application interacts with the proposed TPM system to
speed up the service recovery from WAN failures;

• Deployment of our SD-WAN solution made by the SD-
WAN TE and the TPM system over a lab testbed and a
real Municipal network of an Italian city called Militello
in Val di Catania.

The remainder of this paper is organized as follows:
• Section II presents the related work;
• Section III presents the SD-WAN solution made by SD-

WAN TE and TPM system;
• Section IV provides a description of the testbeds used to

validate our solution;
• Section V shows the experiments and the results;
• Section VI provides a discussion on the limitations of this

paper and some future work;
• Section VII concludes the paper.

II. RELATED WORK

Commercial SD-WAN solutions [20] use different traffic
engineering techniques to manage the network traffic among
the CPEs. Most of them rely on active or passive monitor-
ing (or both) proprietary systems to ensure reliability and
resilience. However, implementation details of these solutions
are not disclosed or open-sourced. The increased attention
for SD-WAN across the enterprise landscape is pushing the
academic research world to investigate new solutions for SD-
WANs architecture and its management/optimization features.
Below, we survey the current research works on two aspects: 1)
SD-WAN solutions and their characteristics; 2) TCP-enabled
passive monitoring techniques.

A. SD-WAN solutions and their features

In [21] and [22], the Google’s network infrastructure team
shows how SDN can be exploited to optimize their Google’s
internal WAN. This WAN is fully controlled by an SDN
controller and connects a dozen of data-centers across the
planet. It has some unique characteristics: massive bandwidth



3

TABLE I: Review on the related work about traffic engineering and monitoring in SD-WAN

Ref. Objectives SD-WAN
applications Services Implementations CPEs - tunnels Metrics

[10] Techno-economic analysis - ATMs - 2 CPEs - 2 tunnels -

[11] Minimize traffic disruptions and
reconfiguration costs

Traffic engineering
Active monitoring Generic Simulation:

2 network topologies
1) 6 CPEs - 1 WAN (14 nodes)
2) 64 CPEs - 1WAN (48 nodes)

Num. disrupted flows
Reconfiguration costs

[12] TE based on traffic classification
and prioritization Traffic engineering Generic Emulation:

Openflow-based switch HP 5900 3 CPEs - 5 tunnels Goodput

[13] TE based on prioritization to guarantee
VoIP traffic under QoS constraints Traffic engineering VoIP Emulation:

Mininet software 2 CPEs - 2 tunnels Bandwidth, latency,
jitter, CPU load

[14] Minimize inter-domain
traffic transit expenses Traffic engineering Generic

Emulation:
1) Openvswitch and VyOS

2) Juniper MX-240
2 CPEs - 4 tunnels Throughput

[15] Demonstration of 1:1 protection
scheme for SD-WAN Traffic engineering Generic Emulation:

Mininet software 2 CPEs - 2 tunnels -

[16] Implementation of MPTCP
over SD-WAN Traffic engineering Generic

Emulation:
1) lab appliances (servers and local netws.)

Real-world:
2) GENI and Amazon AWS

1) 3 CPEs - 5 tunnels
2) 3 CPEs - 2 tunnels Throughput, latency

[17]
TE based on critic-only reinforcement

learning and active tomography to reduce
end-to-end traffic delay

Traffic engineering
Active monitoring Generic Simulation 2 CPEs - 20 tunnels Delay

[18]
TE based on actor-critic reinforcement

learning and active monitoring to increase
the overall service availability

Traffic engineering
Active monitoring Generic Simulation 2 CPEs - 10 tunnels Service availability, delay

[19]
Demonstration on dynamic path selection

based on end-to-end delay
active monitoring

Traffic engineering
Active monitoring Generic Emulation:

Openvswitch and VyOS 3 CPEs - 2 tunnels Delay, packet loss

This paper TE for delay-sensitive services
with transport based monitoring

Traffic engineering
Passive monitoring Real-time video streaming

Emulation:
1) Openflow based switch Aruba 2930F

Real-world:
2) Municipal network

1) 4 CPEs - 3 tunnels
2) 2 CPEs - 2 tunnels

Recovery time,
service availability

requirements, elastic traffic demand and full control over the
edge servers and data-center networks. SDN allows advanced
centralized TE policies that allocate bandwidth among compet-
ing services based on applications priorities. In particular, they
build a TE application with the aim of running their WAN links
at near 100% of utilization, corresponding to 2-3x efficiency
improvements relative to standard practice. Their solution
enables to deploy cost-effective WAN bandwidth maximizing
the network utilization.

Some academic works have built their research upon these
concepts. Authors in [10] perform a techno-economic analysis
about implementing SD-WAN with 4G/LTE for Automated
Teller Machine (ATM) networks. Most ATMs use only the
Very Small Aperture Terminal (VSAT) access to connect their
WAN via satellite. Having only VSAT access on most ATMs
can be risky, especially if the satellite connection goes down.
With SD-WAN, ATM will have at least two WAN connections
to its network; as a result, if one of the connections is down,
network traffic will not be interrupted. Based on the techno-
economic analysis provided by the authors, the implementation
of SD-WAN with 4G/LTE for the ATM network is feasible and
profitable.

The authors in [11] propose a traffic engineering optimiza-
tion algorithm with the aim of minimizing traffic disruptions
and the cost related to the use of different WAN access
technologies, such as those based on LTE, DSL, Cable, etc.
Their algorithm is supported by an active monitoring mod-
ule, which consists of sending periodically end-to-end probes
between CPEs to infer failures and performance degradation
in the underlay WAN. The optimization algorithm is based
on a minimum cost network update (Min-Cost) problem that
minimizes the network reconfiguration costs. The performance
evaluation is made in terms of reconfiguration cost and number
of disrupted flows by considering an increasing number of
network traffic demands.

In [12], the authors propose a traffic engineering algorithm
based on traffic classification and prioritization. Each edge
node connects to the public Internet through standard low cost
access technology WAN, such as xDSL, PON, cable modems,

and even LTE/5G. They consider a topology made by 3 CPEs
and 5 tunnels. The authors claim that, in many cases, their
proposed approach provides up to four times the end-to-end
goodput of that provided by conventional traffic engineering
algorithms.

The authors in [13] propose an SD-WAN solution to connect
two Software Defined Data Centers (SDDCs), ensuring a pre-
defined level of QoS and traffic prioritization. This deployment
is entirely made by emulated software, such as Mininet1 for the
SDN network, Floodlight [23] as controller and vmware2 for
the virtualization of the SDDCs. The main goal of the authors
is to demonstrate that a service, with a required level of QoS,
such as VoIP, can be guaranteed and to provide traffic priority
in an SD-WAN network. Tests are performed by generating
from 150 to 300 VoIP calls and generic TCP/UDP traffic flows
between the SDDCs. Results refer to bandwidth and CPU
consumed by the controller that handles the connections. The
authors claim that QoS in terms of minimum bandwidth, can
be guaranteed in an SD-WAN solution that interconnects two
SDDCs. The controller can efficiently manage 300 VoIP calls,
using a maximum of 16% CPU load.

The authors in [14] propose a Dynamic Traffic Management
(DTM) strategy to tackle the problem of minimizing traffic
transit expenses. It refers to different monetary costs of inter-
WAN domain traffic, such as the one related to the network
energy consumption, and other kind of costs related to the
volume of traffic. The authors focus on the optimization of
costs related to traffic transfer via WANs. The ability of
SD-WAN to switch traffic flows from one link to another
efficiently minimizes transit expenses.

In [15] the authors propose a Cloud network architecture
in which multiple data centers are connected through different
public Internet Service Providers (ISPs). An overlay network
is created by setting up virtual tunnels whose nodes are data
centers. Concerning control plane, they are connected to a
centralized SDN controller that sets forwarding rules for the

1Weblink (accessed on 20/11/2021): http://mininet.org/
2Weblink (accessed on 20/11/2021): https://www.vmware.com/



4

created overlay topology. Authors focus specifically on a two
edge-node case, by proposing a 1:1 protection scheme with a
pair of overlay tunnels, as such the two tunnels are created
into two different WANs, managed by different ISPs. Traffic
flows are divided into critical and non-critical, as consequence,
whenever a failure occurs on a path, non-critical traffic is
stopped, while critical flows are directed to the back-up path.
The architecture is composed by different software modules
working over the Java-based Floodlight Controller [23].

The authors in [16] present a novel implementation of
Multi-Path TCP onto SD-WAN, called WAN-aware MPTCP
(WaMPTCP), which optimize the WAN paths utilization by
aggregating multiple (heterogeneous) WAN paths. WaMPTCP
is also capable of adapting to network failures or congestion
by providing fast failure recovery to applications. The authors
focus on applying MPTCP to an SD-WAN scenario in order
to fully exploit the available bandwidth of WANs. They
implement their proposed solution into an emulated testbed
made by 2 CPEs and 5 tunnels, and a real world testbed made
by 3 CPEs and 2 tunnels.

The authors in [17] exploit active tomography where probes
from the edge of the network are used to infer internal WAN
characteristics. Specifically, the WANs are treated as black
boxes where most of the networks features of interest for traffic
engineering purposes are not directly observable. The work
focuses on an SD-WAN solution for inter-datacenter networks
in which two edge nodes distribute the traffic load among
20 different WAN connections. The authors propose a traf-
fic engineering algorithm based on critic-only reinforcement
learning (RL) by exploiting active tomography to get end-to-
end delay measurement. The idea is to use these measurements
for training the algorithm to distribute the traffic load among
the different WAN connections. The main goal is to reduce
the end-to-end traffic delay by distributing the traffic among
the WAN connections.

Our previous works in [18] and [19] present an implemen-
tation of SD-WAN based on open source components, such
as OpenDaylight [24] as SDN controller, OpenvSwitch [25]
(OvS) and a set of services for network monitoring and policy-
based path selection. In [19], we present a demo-test in a
simple emulated but realistic network environment, showing
new features and advantages for the enterprise in terms of
resource optimization. We exploit a dynamic path selection
algorithm based on end-to-end delay measurements with the
aim of fast recovery from WAN failures. In [18], we propose
a deep reinforcement learning for traffic engineering in SD-
WAN. Considering the well known hub-and-spoke topology
for enterprise networks, the work focuses on optimizing the
service availability for enterprise services. In particular, we
implemented an actor-critic reinforcement learning algorithm
with the goal of distributing the traffic load between two
edge nodes among different WAN connections (from 2 to 10).
The main goal of the RL-based algorithm is to learn how
to distribute the traffic to increase the service availability by
keeping the end-to-end delay under a certain threshold. In
particular, we design different ad-hoc reward functions to train
the algorithm to avoid specific behaviours such as the WAN
flipping problem due to the variation of end-to-end traffic

delay.
Most of the research works presented in this section share

the effort to demonstrate with simulated, emulated and real-
world testbeds, the possibility of obtaining high levels of
QoS even without QoS-guaranteed connectivity such as the
one provided by an MPLS-based connectivity service. They
focus more on the implementation and functionalities of SD-
WANs with generic network traffic and less on analyzing
its performance in terms of service availability and network
failure resilience for specific enterprise services.

With this work, we want to fill this gap by implementing
an open-source SD-WAN solution aiming at increasing the
availability of delay-sensitive services, such as real-time video
streaming. To do so, we developed an SD-WAN application,
called SD-WAN TE, running inside the ONOS controller and
a monitoring system based on eBPF, called TPM system. The
goal is to manage delay-sensitive services running over the
TCP transport protocol in order to achieve fast recovery from
WAN failures. We validate our findings by deploying an open-
source SD-WAN solution into a lab testbed and a real SD-
WAN prototype. Finally, we show a performance analysis in
terms of service availability and total recovery time.

Table I summarizes the current (and recalled) state of the art
research works by emphasizing their novelties and differences
with this paper. The next section will dive into the proposed
SD-WAN TE and TPM systems design and implementation.

B. TCP-enabled passive monitoring techniques

Network monitoring techniques can be split in active and
passive. The former method injects traffic probes into the
network and analyzes their behaviour, while the latter does
not need to inject any additional traffic into the network:
statistical information is gathered by network nodes directly
by observation. This method generates low or even zero
overheads, however, it requires full access to the devices being
monitored (e.g. routers, switches, servers, etc.). In this paper,
we focus on passive network monitoring.

In traditional networks, passive monitoring mostly relies on
capture-and-analyze tools that need expensive instrumentation
and infrastructure. IPMON [26] is a passive delay measure-
ment tool, which captures the header of each TCP/IP packet,
timestamps it and sends the collected data to a central server
for analysis. Another well-established passive monitoring tool
is NetFlow [27]. Authors in [28] and [29] design two algo-
rithms to use the NetFlow function of a network device to
detect packet loss. However, the detection accuracy and real-
time performance of these methods suffer from the fact that
not all packets of traffic flows can be intercepted, as NetFlow
natively performs packet sampling.

Other approaches presented by different authors in [30]
[31] and [32] make use of different parameters from the
TCP protocol (e.g. sequence number, ack number, etc.) to
detect packet loss. However, these methods are time and space
consuming due to the collection and processing of a huge
amount of network traffic samples. Authors in [33] propose
an alternative framework based on packet sampling performed
by the routers to detect packet loss in real-time for both TCP



5

and UDP traffic flows. After collecting the samples, a feature
extraction from TCP and UDP flows is performed and two
machine learning models (i.e. Random Forest and Extreme
Gradient Boosting) are trained to predict the packet loss rate.

Considering the context of wireless networks, authors in
[34] propose a passive monitoring methodology called Pe-
riodic Passive Ping (PePa Ping) for Android devices. PePa
Ping periodically obtains different TCP parameters such as
RTT, jitter, and number of lost packets of all traffic flows.
This passive approach relies on the implementation of a local
VPN server residing inside the client device to collect TCP
parameters directly by the Linux kernel. Authors in [35] focus
on satellite communication and propose to passively monitor
the retransmission rate of TCP flows to estimate the packet
loss rate. In particular, they capture flowing packets and detect
retransmissions by matching the TCP header fields, such as
replications of the same sequence numbers.

In SDN networks and especially thanks to protocols like
OpenFlow [36], monitoring has become more powerful since
flow statistics, up to the transport layer, can be directly ob-
tained from the flow tables within the switches and forwarded
to monitoring collectors. Moreover, OpenFlow switches can
directly report link failures.

Different from all these papers, we present a passive moni-
toring system able to detect lost TCP segments in the locations
where the traffic flows terminate or are generated, that is,
within the hosts involved in TCP sessions. Moreover, our
system collects detailed information related to TCP flows that
may experience packet losses, and not of all active flows (e.g.
UDP flows). In the next section we will dive into the details
of our proposed solution.

III. SD-WAN TE AND TPM SYSTEM:
OVERVIEW AND IMPLEMENTATION

The SD-WAN TE and TPM systems are designed specifi-
cally to meet the requirements of an enterprise that needs to
run delay-sensitive services, based on TCP transport protocol,
in their SD-WAN. Figure 1 shows a typical SD-WAN-based
EN connecting branch offices to a headquarter with multiple
overlay VPNs built over different access technologies WAN,
such as 4G/5G, xDSL, fiber optics, etc. Each VPN is based
on various overlay tunneling protocols, such as GRE[37] and
VxLAN[38].

We developed an ONOS application called SD-WAN TE
to manage and improve traffic engineering at the edge of
the EN. The SD-WAN TE is supported by a monitoring
system, called TPM, responsible for getting real-time traffic
flow information from the server placed at the headquarter that
runs enterprise services. For example, for each TCP flow, it can
collect the number of retransmitted segments, the congestion
window value, the estimated round trip time, etc. According
to the required service performance constraints, SD-WAN TE
is in charge of switching the tunnel in use by updating the
forwarding tables of the CPEs. In a nutshell, the goal of SD-
WAN TE and TPM system is to provide a quick reaction
to WAN failure/congestion where CPEs perform a tunnel
handoff based on information retrieved directly by the running

Fig. 1: SD-WAN TE and TPM system on a typical EN.

services. Next subsections will dive into the details of TPM
system and SD-WAN TE.

A. Transport-layer Passive Monitoring (TPM) system

As already well known, link failures and congestion events
adversely affect TCP performance [39]. Several TCP optimiza-
tion schemes have been proposed to mitigate TCP throughput
degradation and packet loss [40] [41]. Differently from previ-
ous research works, we developed a monitoring system able
to read and store TCP flows information, such as the number
of retransmissions of TCP segments, running on a server. In
the SD-WAN context, the controller can only manage devices
that are at the edge of the network (CPEs). Therefore, if
any link or node failures occur in the WANs, the effect is
reflected on the TCP traffic in the form of increasing number
of retransmitted segments. Our TPM system is in charge of
measuring the number of TCP retransmissions of the traffic
flows and warning the network controller of possible failures
on the specific WAN. The proposed TPM system, which traces

Fig. 2: SD-WAN TE and monitoring system.

TCP retransmissions on the server by means of eBPF [8],
has been coded in C language and is schematically depicted
in Figure 2. To this aim, we implemented a Kernel Agent
(KA), running in the kernel space, able to collect different
kinds of information from the traffic flows that are running



6

into the server in real-time, such as: TCP source port, TCP
destination port, IP source, IP destination and number of TCP
retransmissions. In a nutshell, eBPF is able to trace specific
kernel functions such as those related to the operation of the
TCP protocol. It means that we are able to code programs that
can be automatically executed inside the kernel whenever a
specific kernel function is activated. For instance, the function
called tcp_retransmit_skb takes care of retransmitting a
lost TCP segment, and whenever it is called by the kernel, our
KA is executed automatically; in other words, KA is triggered
every time a traffic flow experiences a TCP retransmission.
Afterwards, the data collected by KA is sent to a buffer, which
can be read by a program in the user space. A User Agent
(UA) is in charge of processing the information collected by
KA after having read the buffer. Specifically, it counts the
number of TCP retransmissions per traffic flow in a given
time interval and monitors whether a pre-defined threshold
(TH) is exceeded. TH represents the maximum number of TCP
retransmissions that can be tolerated for each traffic flow. For
instance, if a service can tolerate 10 packets lost per second,
then TH can be set equal to 10 directly by the user as a
parameter of the UA. If a traffic flow overcomes TH, the
TPM system will send out an Alert Packet (AP), see figure
2, containing the information of that connection, i.e., a tuple
including TCP source port, TCP destination port, IP source, IP
destination and number of retransmissions. The AP is crafted
using Python’s scapy library3. When the CPE receives the
AP from the server, it forwards the AP towards the ONOS
controller.

B. SD-WAN Traffic Engineering (SD-WAN TE) application

The goal of the SD-WAN TE application is twofold. The
first is to assign the tunnel to the traffic service that requests it,
while the second is to manage the dynamic re-assignment of
the tunnels based on the performance of the WAN networks.
When the application receives a network demand, it assigns
the first free tunnel or, if it does not exist, creates a new
one. Moreover, every time the TPM system detects a service
degradation due to many TCP segments retransmissions, it
informs the SD-WAN TE by sending an Alert Packet (AP)
containing the information regarding the degraded service, as
seen in the previous subsection. Figure 3 shows the SD-WAN
TE application modules.

When an AP is received, it is processed by the AP classifi-
cation module, which reads the packet payload and classifies
which services are degraded. This operation is performed
thanks to a Quality-based routing (QbR) table which sets
the maximum number of TCP retransmissions a service can
tolerate. The purpose of this table is to define thresholds on
network parameters that cannot be exceeded by application
services. In particular, the QbR table contains an entry for each
type of service identified by: TCP source port (TCP src),
TCP destination port (TCP dst), IP source (IP src), IP
destination (IP dst), service and QbR Threshold (QbR TH),
as shown in figure 3. In this paper, we assume a software
module capable of filling this table. Given the goal of this

3Weblink (accessed on 12/11/2021): https://scapy.net/

SD-WAN TE application

AP classification Overlay tunnel 
switching

QbR table

QbR table
TCP src TCP dst IP src IP dst Service QbR TH

P1 P2 IP1 IP2 Video 2

Topology table

Topology table
IP (Server/Client) IP (CPE)

IP-x IP-CPE

Fig. 3: SD-WAN TE application modules. The QbR and
Topology tables show a typical example of an entry line with
information regarding the details of traffic flows and their
sources and destinations.

paper, the development of this software module is out of the
scope, so we assume a pre-filled QbR table.

Once the degraded services have been identified, the overlay
tunnel switching module has the task of changing the tunnel
used by the degraded services to another. This module contains
a topology table that maps the IP address of the clients
with that of the CPEs to which they are connected, and
is updated through the control messages of the Openflow
1.3 protocol. The tunnel switching is made on the basis of
the health of the tunnel in terms of (i) number of services
currently flowing and (ii) current number of retransmitted TCP
segments. Specifically, the health of the tunnel is evaluated by
tracking the number of TCP retransmissions of each service
flowing on the tunnel. For example, considering a specific
application service, if its TCP retransmissions exceed the
respective QbR threshold, the service will be routed to the
first tunnel where the number of TCP retransmissions of the
current services is less than the respective QbR thresholds.
The tunnel change happens by updating the forwarding table
of the CPEs.

The proposed overall SD-WAN TE and TPM system work-
ing procedure is shown in Algorithm 1.

By default, TH is set to 1 by the UA. This means that,
every time a retransmission occurs, KA collects and writes to
the buffer the TCP traffic flows information. The UA reads the
buffer and counts the number of TCP retransmissions occurred
in a given time interval, which can be dynamically chosen.
Then, if the TH is exceeded by one or more TCP traffic flows,
the UA sends an AP to the CPE. The CPE sends this AP to
the ONOS controller and then the SD-WAN TE application
reads the payload of the AP. Finally, if one or more TCP
flows overcome the QbR TH, the controller triggers the tunnel
change by updating the forwarding tables of the CPEs.

C. Comparisons with traditional passive monitoring

As mentioned in the previous sections, the TPM system is
based on passive monitoring, and it differs from traditional
passive monitoring techniques (see Section II-B and [42])
mainly on implementation and on the way TCP flows are



7

Algorithm 1: SD-WAN TE and TPM system algorithm

1 KA is triggered when the tcp_retransmit_skb
function is activated;

2 KA retrieves the tuple ti ∈ T for each TCP active flow
i and submit it to the buffer.
ti : [TCPsrc, TCPdst, IPsrc, IPdst,Nretrans];

3 UA reads the buffer and store the TCP flows info
according to a threshold TH as follows;

4 for t ∈ T do
5 if t[Nretrans] ≥ TH then
6 Store t into a list L;
7 end
8 end
9 UA sends an AP to the controller containing L into

the payload;
10 SD-WAN TE receives the AP, reads the payload and

extracts L;
11 SD-WAN TE classifies the TCP flows by performing a

linear search on the QbR table;
12 for each TCP flow with Nretrans ≥ the corresponding

QbR TH do
13 Switch/Assign the tunnel for that TCP flow with

the first available tunnel that contains traffic flows
whose number of current TCP restransmissions is
≤ than the corresponding QbR TH;

14 end

monitored. Below, we present differences and similarities with
traditional passive monitoring techniques, whose features are
summarized in Table II:

1) TPM requires less CPU usage than traditional methods,
especially when no TCP retransmissions occur. Tra-
ditional methods consume many CPU cycles as they
sample and process traffic to and from network devices.

2) TPM has been developed to monitor TCP-only connec-
tions, while traditional methods can monitor any kind of
traffic. However, TPM functionalities could be extended
to cover a larger variety of traffic.

3) TPM can detect TCP segment losses in real time as it
is installed where connections are generated/terminated.
Instead, traditional methods are not suitable for real-time
detection of losses as all traffic must be sampled and
analyzed, which is a time-consuming task.

4) TPM requires a software agent to be installed on
server/client machines and is only compatible with
Linux operating systems (kernel ≥ 4.x). Conversely,
traditional methods require the installation of software
inside the CPEs and can take advantage of embedded
protocols that must be supported (e.g. NetFlow, Bidi-
rectional Forwarding Detection, etc.).

5) TPM analyzes all TCP traffic flows, even non-SD-WAN.
While traditional methods can carry out a preventive
filtering of the type of traffic to be analyzed.

A customer using SD-WAN should be aware of the pros
and cons in Table II to make the most appropriate choice
on the monitoring system to be adopted by its SD-WAN

solution. Furthermore, since the customer usually owns most
of the IT equipment needed to provide its services to end
users, it can easily implement the TPM system in its servers
so that high-priority TCP connections can be controlled in
real-time. Additionally, it must also take into account the
limitations of this approach and may decide to complement
it with other additional monitoring strategies. For instance, on
the same SD-WAN network the customer can also implement
(i) traditional passive monitoring methods operating within the
CPEs and/or (ii) active monitoring techniques to make up for
the shortcomings of passive methods (see Section II-B).

IV. TESTBEDS DESCRIPTION

In this work we developed two SD-WAN testbeds. The first
one, shown in figure 4, called Lab testbed, is a controlled
implementation of an SD-WAN. The objective is to use this
controlled testbed to develop and study traffic engineering and
monitoring algorithms in order to test them on real SD-WANs.
The second testbed, shown in figure 5, called Municipal, is the
result of a collaboration between Politecnico di Milano, SWAN
networks (a university spin-off company of the Politecnico
di Milano) and the municipal administration of the Italian
city of Militello in Val di Catania (V.C.). The goal is to
test the algorithms developed in our lab on a live SD-WAN
implementation to evaluate performance and limitations. We
deployed our SD-WAN solution made by SD-WAN TE + TPM
system on both testbeds to validate it (see section V).

A. Lab testbed

Considering figure 4, the Lab testbed is made up of four
main elements:

Fig. 4: SD-WAN testbed in our lab at Politecnico di Milano.

• SD-WAN controller: we used the open-source ONOS [9]
SDN controller, which is responsible for managing the
CPEs through the SD-WAN TE application presented in
the previous section. We instantiated the controller on a
server located in our lab at Politecnico di Milano (Milan,
Italy) with a Linux operating system.



8

TABLE II: Comparisons between traditional passive monitoring techniques and TPM system

Traditional Passive Monitoring techniques TPM system
1 High CPU usage Low CPU usage
2 Any kind of traffic TCP-only
3 No real-time detection of segment losses Real-time detection of segment losses
4 Software to be installed on the CPEs Software to be installed on the server/client machines (Linux-only)
5 Easy connections filtering and isolation Additional overhead for non-SD-WAN connections

• Underlay transport network: we used an Openflow-
enabled switch (Aruba JL260A 2930F-48G-4SFP) that
is capable of creating several emulated instances of
Openflow switches by statically binding its physical ports
to each instance. We emulated 8 Openflow switches, see
figure 4, acting as internal WAN devices managed by
an Internet Service Provider (ISP), therefore they are not
controllable by the SD-WAN controller. For this reason,
they are connected to a different ONOS instance that
we do not show in the figure for clarity. In any case,
the control over the internal WAN devices allows us
to test the limitations and performance of an SD-WAN.
For example, we can emulate controlled congestion and
failure events.

• CPEs: they are made by Raspberry Pi computers (model
3B+ with Raspbian as operative system) in which we
have installed OpenvSwitch (version 2.12.0). The latter
was exploited for the switching functionality and for
the establishment of the overlay tunnels. Specifically,
we applied the Generic Routing Encapsulation (GRE)
tunneling protocol [37] to implement different overlay
tunnels.

• Headquarter server: it is a server where we have installed
and developed the TPM system. It consists of 8 Intel
Xeon processors with 128 GB of RAM in which we
have installed Ubuntu server 20.04 LTS and eBPF. This
server is used as the source of enterprise services to be
monitored via the TPM, such as real-time video streaming
flows. The clients that request the services are represented
by three PCs placed at the branch offices.

B. Municipal testbed

The Municipal testbed is made by two CPEs and two
overlay tunnels based on GRE tunneling protocol. The city-
hall of Militello is connected to a remote branch office of
the municipality by two different networks. In each one of
the two networks a tunnel has been created to connect the
two sites. The aim of the SD-WAN solution is to improve
network availability by dynamically switching the inter-site
traffic flows between the two tunnels. The switching occurs
based on the status of the traffic flows running into the two
tunnels, constantly monitored by means of the proposed TPM
system.

We present the physical architecture of the testbed in figure
5. There are two CPEs in the data layer, based on Raspberry
Pi as in the Lab testbed, one at the city hall and the other
at the remote office, connecting the hosts placed in the two
administrative offices to the WAN tunnels. One of the two
WAN networks interconnecting the CPEs is a private WLAN
owned by the municipality of Militello V.C., while the second

Fig. 5: SD-WAN testbed in Militello V.C.

is an Internet/Broadband network provided by an Italian ISP.
As said, we applied the GRE tunneling protocol [37] to
implement the two tunnels, see Tunnel-1 and Tunnel-2 in
figure 5, between the CPEs through the two networks. To
implement the SD-WAN controller we used the same ONOS
controller as in the Lab testbed. Originally, the two sites
were connected only by the WLAN, which is owned by the
municipality and is therefore free of charge. However, this
network is often subject to failures due to hardware problems
and bad weather, which causes small displacements of the
antennas from their optimal position. So, the municipality
decided to contract the ISP to switch to an interconnection
through fixed broadband access, which is on the opposite a
paid service. The idea underlying our testbed is, by SD-WAN,
to enable a mechanism that normally routes traffic on the free-
of-charge WLAN connection, switching to the ISP network
only as a backup. In this way, we can improve the availability
performance of the inter-site connection, while minimizing the
usage of the paid ISP network, thus reducing the cost for the
municipality. Our SD-WAN solution is able to manage the
traffic flows between these two networks.

V. EXPERIMENTS AND RESULTS

In order to measure the performance of the proposed SD-
WAN solution, we conducted different experiments on both
testbeds and measured two performance metrics, that are: total
Recovery Time (RT) and Service Availability (SA). We run
multiple TCP flows between the CPE at the Headquarter and
the CPEs at the branch offices by means of D-ITG [43] tool.
We assume those TCP flows being part of delay-sensitive



9

services, so with very narrow QoS thresholds, therefore, we
impose a TH on the number of retransmissions less or equal
to 10. We evaluated the performance of our solution by
considering two types of network failures that can generate
packet loss: congestion events, emulated on both testbeds,
and WAN link failures, emulated only on the lab testbed.
The former have been generated by inducing packet losses
on the overlay tunnels of both testbeds by means of NetEm
[44], a tool able to emulate the properties of WANs such as
variable delay, packet loss, duplication and re-ordering. The
latter was carried out by manually disconnecting the links of
the emulated WAN network testbed within our laboratory at
the Politecnico di Milano.

A. Evaluation of the TPM system under network congestion
events

1) Lab testbed: This section evaluates the total Recovery
Time (RT) and the Service Availability (SA) by considering
the Lab testbed in figure 4 under network congestion events.
Table III shows the technical setup of the Lab testbed.

TABLE III: Lab testbed setup

Lab testbed
Threshold (TH) 1, 3, 5, 10
Packet Loss (PL) 1%, 5%, 10%
Congestion events uniformly distributed from 100 to 200
Average duration
of the congestion event 5 s

Number of TCP flows from 50 to 150

Topology 4 CPE (1 Headquarter and
3 branch offices); 3 overlay GRE tunnels

Single experiment duration 2 hours
Number of experiments 50

Figure 6 shows the average RT by considering different
Packet Loss (PL) percentages and Thresholds (TH). In par-
ticular, we look at the following time intervals:

• Detection Time (DT): average time interval elapsed from
the start of the congestion event to its detection by the
TPM system;

• Switch Path Time (SPT): average time interval elapsed
from the sending of the AP to the path switching:

• Total Recovery Time (RT): the sum of the two previous
time intervals.

PL (%) TH Detection(s) Switch(s) Total(s) max_retrans cong_events sim_time(s) ServAv(%)
1 1 0.02065 0.11882 0.13947 100 6000 99.768                   

3 0.36269 0.11788 0.48057 100 6000 99.199                   

5 0.58227 0.12417 0.70644 100 6000 98.823                   

10 0.8744 0.12553 0.99993 100 6000 98.333                   

5 1 0.02065 0.14937 0.17002 100 6000 99.717                   

3 0.06944 0.1479 0.21734 100 6000 99.638                   

5 0.12048 0.18303 0.30351 100 6000 99.494                   

10 0.25114 0.19939 0.45053 100 6000 99.249                   

10 1 0.00918 0.19046 0.19964 100 6000 99.667                   

3 0.03444 0.21551 0.24995 100 6000 99.583                   

5 0.06248 0.26652 0.329 100 6000 99.452                   

10 0.12833 0.30491 0.43324 100 6000 99.278                   

mean

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 10 1 3 5 10 1 3 5 10

Ti
m
e 
[s
]

Threshold (TH)

Detection Time Switch Path Time

99.768 

99.199 

98.823 

98.333 

99.717 
99.638 

99.494 

99.249 

99.667 
99.583 

99.452 

99.278 

97.500

98.000

98.500

99.000

99.500

100.000

1 3 5 10 1 3 5 10 1 3 5 10

Se
rv
ic
e 
av
ai
la
b
ili
ty
 [
%
]

Threshold (TH)

PL = 1% PL = 5% PL = 10%

PL = 1% PL = 5% PL = 10%

Fig. 6: Total recovery time with different PL and TH values.

The DT is inversely proportional with respect to the in-
crease of PL, while the SPT increases together with PL.

Since the packet loss is set to the network interfaces of the
CPE, the control plane traffic is also affected, consequently
increasing the percentage of packet loss also increases the
SPT. Indeed, when the PL is small, it means that few TCP
connections are experiencing retransmissions, so the traffic
switching procedure takes less time. On the other hand, when
the PL increases it means that many TCP connections are
experiencing retransmissions, as such, the time to process and
to make the tunnel change is higher. In particular, figure 7
shows the probability density function of DT and SPT when
TH=1 and PL=5%. We can see that the total recovery time
mostly depends on the SPT. As a result, optimizing the SPT
procedure means reducing the overall RT.

0%

5%

10%

15%

20%

25%

30%

0 0.032 0.064 0.096 0.128 0.16 0.192 0.224 0.256 0.288 0.32 0.352 0.384

P
ro
b
ab
ili
ty
 D
en

si
ty
 F
u
n
ct
io
n
 (
%
)

Time [s]

Detection Time (TH=1; PL=5%) Switch Path Time (TH=1; PL=5%)

Fig. 7: Probability density function of DT and SPT when
PL=5% and TH=1.

Considering a PL=5% and TH=10, figure 8 shows a detailed
perspective on the result in terms of bitrate and delay of
a single TCP flow. In the figure, the start and end of the
congestion can be graphically identified by the drop and rise of
the bitrate and by the rise and drop of the delay, respectively.
The total RT span between these two time instants is around
400 ms. The vertical red line indicates the time of the 11th

retransmission, that triggers the AP. In this experiment the
total number of retransmissions stopped at 34, right before
the switch to the backup tunnel. In particular, as TCP retrans-
missions increase, the instantaneous delay of the flow also
increases, which returns to a low value within a few hundred
of milli-seconds. However, in this time interval, i.e. the RT,
the instantaneous delay gradually increases and then returns
to acceptable values. This mechanism helps to keep the delay
value very low on average. If we did not apply this mechanism,
the delay value would continue to grow, significantly affecting
the quality of the service.

Figure 9 shows the performance of the proposed implemen-
tation in terms of Service Availability with different values of
TH and PL. Specifically, we define SA as percent uptime,
i.e., the total time in which TCP traffic is routed into the
uncongested tunnel; in other words, the total time in which
the number of retransmissions remained below the QbR TH.

We can notice that the SA decreases as the TH increases
for each value of PL. When we increase the value of TH, the
total RT increases, as a result, the downtime also increases by
affecting the overall SA. Furthermore, we can note that the SA
when PL=5% is slightly higher than when PL=10%. This is
due to the fact that, by increasing the PL, we also increase the



10

Fig. 8: Evolution of a TCP flow’s Bitrate and Delay.

Esperimenti 2 ore 1 TCP flow Single‐long

PL (%) TH Detection(s) Switch(s) Total(s) max_retrans cong_events
1 1 0.00866 0.10531 0.11397 10 200

3 0.05252 0.10475 0.15727 14 200

5 0.06306 0.10834 0.1714 16 200

10 0.14204 0.11428 0.25632 22 200

5 1 0.0047 0.12024 0.12494 26 200

3 0.01814 0.12624 0.14438 29 200

5 0.03964 0.12732 0.16696 35 200

10 0.07242 0.1311 0.20352 36 200

10 1 0.01293 0.14904 0.16197 28 200

3 0.02459 0.16783 0.19242 40 200

5 0.02944 0.18851 0.21795 48 200

10 0.05495 0.17455 0.2295 40 200

Esperimenti 2 ore 10 TCP flow Parallel‐long

PL (%) TH Detection(s) Switch(s) Total(s) max_retrans cong_events
1 1 0.11667 0.11882 0.23549 100

3 0.36269 0.11788 0.48057 100

5 0.58227 0.12417 0.70644 100

10 0.8744 0.12553 0.99993 100

5 1 0.02065 0.14937 0.17002 100

3 0.06944 0.1479 0.21734 100

5 0.12048 0.18303 0.30351 100

10 0.25114 0.19939 0.45053 100

10 1 0.00918 0.19046 0.19964 100

3 0.03444 0.21551 0.24995 100

5 0.06248 0.26652 0.329 100

10 0.12833 0.30491 0.43324 100

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 10 1 3 5 10 1 3 5 10

Ti
m
e 
[s
]

Threshold (TH)

Detection Time Switch Time

99.608 

99.199 

98.823 

98.333 

99.717 
99.638 

99.494 

99.249 

99.667 
99.583 

99.452 

99.278 

97.500

98.000

98.500

99.000

99.500

100.000

1 3 5 10 1 3 5 10 1 3 5 10

Se
rv
ic
e 
av
ai
la
b
ili
ty
 [
%
]

Threshold (TH)

PL = 1% PL = 5% PL = 10%

PL = 1% PL = 5% PL = 10%

Fig. 9: Service availability with different TH and PL values.

number of lost packets of the control plane traffic responsible
for the tunnel switching in the CPEs. In fact, this is visible
from figure 6, where the SPT increases as the PL increases,
elevating the total RT. If, on the other hand, we do not use
the proposed SD-WAN solution, the maximum reachable SA
is 91.666%. As a result, our solution increases total SA by at
least 6.667% to a maximum of 7.102%.

0.0621 0.0776

0.265

0.786

0

0.2

0.4

0.6

0.8

1

50Mbps 10Mbps 2Mbps 1Mbps

De
te
ct
io
n 
Ti
m
e 
[s
]

Maximum rate [Mbps]

Fig. 10: Detection time with different maximum rates imposed
on the tunnels.

Figure 10 shows the performance of the proposed TPM
system in terms of DT with different bandwidth limitations for
the monitored application services. In particular, we used TBF
qdisc4, a tool to shape the traffic at different maximum rates,
and with {PL=10%; TH=5; 10 TCP flows}. This experiment
wants to emphasize a classic characteristic of passive moni-
toring, that is, the DT of the retransmitted segments depends

4Website: https://man7.org/linux/man-pages/man8/tc-tbf.8.html

on the amount of traffic of the monitored application service.
We can see from figure 10 how the DT and the maximum
rate are inversely proportional. This aspect has an effect on
the monitored application services with low traffic rates, such
as tens of Kbps or a few Mbps. Being the DT higher, the
SD-WAN TE takes longer to reroute the services.

2) Municipal testbed: This section evaluates the total Re-
covery Time and the Service Availability by considering the
Municipal testbed in figure 5. Table IV shows the technical
setup of the testbed. In particular, we were able to test our
SD-WAN solution during three working days of the Munic-
ipality administration, as such, we could run a subset of the
experiments that we run into the Lab testbed. We considered
a TH equal to 10 and we could run at most 50 TCP flows.

TABLE IV: Municipal testbed setup

Municipal testbed
Threshold (TH) 10
Packet Loss (PL) 1%, 5%, 10%
Congestion events uniformly distributed from 100 to 200
Average duration
of the congestion event 5 s

Number of TCP flows from 10 to 50
Topology 2 CPE, 2 overlay GRE tunnels
Single experiment duration 8 hours
Number of experiments 3

Table V shows the average RT and SA for the Municipal
testbed. In this case the DT and the SPT are higher than those
measured in the Lab testbed. It depends on the geographical
distance between the CPE and the SD-WAN controller, in fact
the CPEs and the controller are located at a distance of 1000
km, as such, it directly affects the SA. This result leads us to
conclude the importance of the controller location for those
services where immediate controller intervention is required.
In order to minimize the DT and the SPT, we could apply
various re-routing strategies based on proactive methods, such
as instructing before hand the CPEs which tunnels to use in
case some TCP flows should experience retransmissions. The
latter is left for future work.

TABLE V: Municipal testbed: recovery time and service
availability evaluation

DT SPT RT SA
Packet Loss 1% 0.962 s 0.151 s 1.113 s 99.033 %
Packet Loss 5% 0.645 s 0.207 s 0.852 s 99.260 %

Packet Loss 10% 0,386 s 0.238 s 0.624 s 99.458 %

B. Evaluation of the TPM system under WAN link failures

This section evaluates the RT and SA by considering the
Lab testbed in figure 4 under WAN link failures. We compared
our SD-WAN solution based on the TPM system with a
baseline tunnel handoff procedure based on the Bidirectional
Forwarding Detection (BFD) protocol [45]. BFD is a network
protocol that is used to detect link failures between two
connected routers or switches. It is integrated in OvS and
used for detecting link failures. By default, BFD declares a
link failure after three failed handshakes and declares a link
recovered after one successful handshake. Each BFD packet



11

can be sent to BFD peers within a minimum of 50 ms, as a
result, BFD can detect a fault only after 150 ms. However, we
need to take into consideration the processing time to elaborate
the failure and inform the controller. This additional time is
strictly related to the testbed setup.

For this experiment, we compared how our SD-WAN solu-
tion reacts to WAN link failures by physically disconnecting
the links in the lab during the experiments. In particular, we
focused on analyzing the RT for both approaches, namely SD-
WAN based on TPM and on BFD. This type of experiment
shows that, after a link cut, the number of retransmissions
generated by the TCP protocol is two (at most); consequently,
in order to capture the link cuts, we set the TH to 1 and 2. Table
VI shows the results of this set of experiments. Considering
the setup of the Lab testbed, our solution obtained an average
value of RT equal to 0.876 s (TH=1) and 1.4 s (TH=2), while
the one based on BFD obtained an average value of 0.340 s.
In this case, the monitoring approach based on BFD protocol
highlights how our solution is less suitable for the detection
of WAN link failures.

This experiment also makes a fundamental tradeoff emerge,
that is, which is the best choice of the TH. A low TH
readily responds to a possible network problem but increases
the likelihood of numerous unnecessary handoffs making the
overall SD-WAN unstable. On the other hand, a high TH
reduces the likelihood of erroneous handoffs but increases the
service unavailability. Clearly, the number of TCP retransmis-
sions as the only metric for determining network failures is
shown not to be enough, and makes important to investigate
other innovative techniques so that the broadest types of
failures can be embraced. As mentioned in section III-C,
a winning approach could be combining various monitoring
techniques that are complementary to each other and that are
able to promptly prevent the different types of failures that the
network may incur.

TABLE VI: Comparison between SD-WAN based on TPM
and BFD.

RT SA

SD-WAN based on TPM TH=1 0.876 s 99.2325 %
TH=2 1.4 s 98.7847 %

BFD 0.463 s 99.5467 %

VI. DISCUSSION ON OPEN ISSUES AND FUTURE WORK

In this paper, we have presented an SD-WAN solution
optimized for high-priority enterprise application services. We
must point out that based on the choice of TH and QbR
TH parameters, other types of services that are not high-
priority can also be optimized. For instance, low-priority
application services could be handled through load balancing
techniques based on the amount of traffic flowing on the
tunnels. We decided to focus on delay-sensitive services due
to their popularity and importance in a 5G network context.
Nevertheless, the inclusion of low-priority traffic in our testbed
will be considered in our future work. We have demonstrated
how an eBPF-based monitoring system implemented at the
transport layer can be reliable and performing. However, there

are some problems and limitations of our solution to consider.
Our proposed SD-WAN solution is limited to applications
that use TCP as the transport protocol. This represents a
limitation of our system, but at the same time an interesting
starting point for a future work. For instance, a possible
extension of the TPM system is to consider other transport
protocols such as UDP to optimize those application services
that make use of it. eBPF may not be supported by all server
operating systems on the market. On the other hand, recent
developments show that this tool is going to be supported
by multiple operating systems, which makes the applications
that use it supported5. The QbR table dimension shown in
figure 3 could pose a scalability problem in terms of number
of entries. Although the filling of this table is out of the
scope in this paper, it represents an interesting future work.
That is, the implementation of a system able to recognize
the type of service in real time. Moreover, in this paper we
have focused on effectively managing two types of network
failures that are related to sudden congestion and link cut
events. However, in our future work, we will consider other
failure scenarios related to the network controller, CPE, and
headquarter server. These three aspects represent the starting
point for our subsequent work and we believe that this solution
will soon accommodate other types of services with different
QoS constraints.

VII. CONCLUSIONS

An enterprise WAN is a network that connects
geographically-spread sites of a company that could be
located anywhere in the world. MPLS has been so far the
main WAN technology for enterprise networking because of
its high performance. Although MPLS has many advantages,
SD-WAN is a new and fast growing paradigm that could
achieve similar performance, but more cost-effectively. In
this paper, we evaluated the performance of an experimental
SD-WAN solution deployed in two real testbeds to deliver
delay-sensitive service flows with certain QoS thresholds
in the case of congestions. We have implemented a traffic
engineering application directly inside the ONOS controller
that operates together with a monitoring system. The latter
is able to collect transport protocol information such as TCP
retransmissions. We have observed the advantages of our
SD-WAN solution in terms of recovery time and service
availability, showing how this solution can provide high
performance. In an increasingly Cloud-centric world, this
revolutionary technology is universally acclaimed as a new
and unprecedented way to easily implement policies across
large WANs at a fraction of the cost of traditional solutions.

ACKNOWLEDGMENT

The authors would like to thank the administration of the
Municipality of Militello in Val di Catania. A heartfelt thanks
goes to the former Head of the IT Office Mario Troia, whose
help and support were of paramount importance. Thank you
for everything you have done.

5Weblink (accessed on 17/11/2021): https://ebpf.io/



12

REFERENCES

[1] S. Troia, M. Mazzara, L. Zorello, and G. Maier, “Performance evalu-
ation of overlay networking for delay-sensitive services in sd-wan,” in
IEEE International Mediterranean Conference on Communications and
Networking (MeditCom), 2021.

[2] C. N. Academy, Ed., Connecting Networks Companion Guide. Cisco
Press., 2014.

[3] R. K. Rangan, “Trends in sd-wan and SDN,” CSI Transactions on ICT
8.1, 2020.

[4] C. Evans, J. Issa, and S. Forrest, “The sustainable future of video enter-
tainment, from creation to consumption,” in White paper, Futuresource
and Interdigital, 2020.

[5] RFC 7540 - hypertext transfer protocol version 2 (http/2) standard.
[Online]. Available: https://datatracker.ietf.org/doc/rfc7540/

[6] Z. Xu, X. Zhang, and Z. Guo, “Qoe-driven adaptive k-push for http/2
live streaming,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 29, no. 6, pp. 1781–1794, 2019.

[7] R. Huysegems, J. Van Der Hooft, T. Bostoen, P. Rondao Alface,
S. Petrangeli, T. Wauters, and F. De Turck, “Http/2-based methods to
improve the live experience of adaptive streaming,” in Proceedings of the
23rd ACM international conference on Multimedia, 2015, pp. 541–550.

[8] ebpf. [Online]. Available: https://ebpf.io/
[9] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,

B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed SDN os,” in Proceedings of the third workshop on
Hot topics in software defined networking, 2014, pp. 1–6.

[10] S. Andromeda and D. Gunawan, “Techno-economic analysis from
implementing sd-wan with 4g/lte, a case study in xyz company,” in 2020
International Seminar on Intelligent Technology and Its Applications
(ISITIA), 2020, pp. 345–351.

[11] D. Zad Tootaghaj, F. Ahmed, P. Sharma, and M. Yannakakis, “Homa: An
efficient topology and route management approach in sd-wan overlays,”
in IEEE INFOCOM 2020 - IEEE Conference on Computer Communi-
cations, 2020, pp. 2351–2360.

[12] S. Lee, K.-Y. Chan, and T.-Y. Chen, “Design and implementation of an
sd-wan vpn system to support multipath and multi-wan-hop routing in
the public internet,” in TechRxiv, 2020.

[13] R. E. Mora-Huiracocha, P. L. Gallegos-Segovia, P. E. Vintimilla-Tapia,
J. F. Bravo-Torres, E. J. Cedillo-Elias, and V. M. Larios-Rosillo, “Imple-
mentation of a sd-wan for the interconnection of two software defined
data centers,” in 2019 IEEE Colombian Conference on Communications
and Computing (COLCOM), 2019, pp. 1–6.

[14] Z. Duliski, R. Stankiewicz, G. Rzym, and P. Wydrych, “Dynamic traffic
management for sd-wan inter-cloud communication,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 7, pp. 1335–1351, 2020.

[15] K. Phemius and M. Bouet, “Implementing openflow-based resilient
network services,” in 2012 IEEE 1st International Conference on Cloud
Networking (CLOUDNET), 2012, pp. 212–214.

[16] Y. Zhang, J. Tourrilhes, Z.-L. Zhang, and P. Sharma, “Improving sd-
wan resilience: From vertical handoff to wan-aware MPTCP,” IEEE
Transactions on Network and Service Management, vol. 18, no. 1, pp.
347–361, 2021.

[17] S. Xu, M. Kodialam, T. V. Lakshman, and S. S. Panwar, “Tomography
based learning for load distribution through opaque networks,” 2020.

[18] S. Troia, F. Sapienza, L. Var, and G. Maier, “On deep reinforcement
learning for traffic engineering in sd-wan,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 7, pp. 2198–2212, 2021.

[19] S. Troia, L. M. M. Zorello, A. J. Maralit, and G. Maier, “Sd-wan:
An open-source implementation for enterprise networking services,” in
2020 22nd International Conference on Transparent Optical Networks
(ICTON), 2020, pp. 1–4.

[20] (2020) Comparison of the sd-wan vendor solutions. [online]. [On-
line]. Available: https://www.netmanias.com/en/post/oneshot/12481/sd-
wansdn-nfv/comparison-of-the-sd-wan-vendor-solutions

[21] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

[22] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, C. Bhagat,
S. Jain, J. Kaimal, S. Liang, K. Mendelev et al., “B4 and after: managing
hierarchy, partitioning, and asymmetry for availability and scale in
google’s software-defined wan,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, 2018, pp.
74–87.

[23] (2013) Floodlight. [Online]. Available:
http://www.projectfloodlight.org/floodlight

[24] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a model-driven SDN controller architecture,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014. IEEE, 2014, pp. 1–6.

[25] Ovsdb. [Online]. Available:
http://docs.openvswitch.org/en/latest/ref/ovsdb.7/

[26] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and S. C. Diot, “Packet-level traffic measurements from the
sprint ip backbone,” IEEE network, vol. 17, no. 6, pp. 6–16, 2003.

[27] B. Claise, G. Sadasivan, V. Valluri, and M. Djernaes, “Cisco systems
netflow services export version 9,” 2004.

[28] R. Liu, S. Yang, Q. Zhang, and X. Li, “Icmp netflow records based
packet loss rate estimation,” in 2018 Eighth International Conference
on Instrumentation & Measurement, Computer, Communication and
Control (IMCCC). IEEE, 2018, pp. 1238–1241.

[29] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

[30] Y. Gu, L. Breslau, N. Duffield, and S. Sen, “On passive one-way loss
measurements using sampled flow statistics,” in IEEE INFOCOM 2009.
IEEE, 2009, pp. 2946–2950.

[31] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, “Mea-
surement and classification of out-of-sequence packets in a tier-1 ip
backbone,” IEEE/ACM Transactions on networking, vol. 15, no. 1, pp.
54–66, 2007.

[32] M. Mellia, M. Meo, L. Muscariello, and D. Rossi, “Passive analysis of
TCP anomalies,” Computer Networks, vol. 52, no. 14, pp. 2663–2676,
2008.

[33] H. Wu, Y. Liu, G. Cheng, and X. Hu, “Real-time packet loss detection
for TCP and UDP based on feature-sketch,” in IEEE INFOCOM 2021 -
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2021, pp. 1–6.

[34] D. Madariaga, L. Torrealba, J. Madariaga, J. Bustos-Jiménez, and
B. Bustos, “Pepa ping dataset: Comprehensive contextualization of
periodic passive ping in wireless networks,” in Proceedings of the 12th
ACM Multimedia Systems Conference, ser. MMSys ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 274280.
[Online]. Available: https://doi.org/10.1145/3458305.3478456

[35] K. Koide, S. Fujieda, K. Cho, and N. Shiratori, “TCP retransmission
monitoring and configuration tuning on ai3 satellite link,” in Technolo-
gies for Advanced Heterogeneous Networks, K. Cho and P. Jacquet, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 282–295.

[36] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[37] RFC 2784 - generic routing encapsulation (gre) - ietf tools. [Online].
Available: https://tools.ietf.org/html/rfc2784

[38] RFC 7348 - virtual extensible local area network (vxlan): A framework
for overlaying virtualized layer 2 networks over layer 3 networks.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc7348

[39] U. Ranadive and D. Medhi, “Some observations on the effect of route
fluctuation and network link failure on TCP,” in Proceedings Tenth
International Conference on Computer Communications and Networks
(Cat. No.01EX495), 2001, pp. 460–467.

[40] R. Crpa, M. D. de Assuno, O. Glck, L. Lefvre, and J.-C. Mignot,
“Evaluating the impact of SDN-induced frequent route changes on TCP
flows,” in 2017 13th International Conference on Network and Service
Management (CNSM), 2017, pp. 1–9.

[41] G. Li and P. Jin, “A dynamically adjusted congestion control algorithm
for TCP,” J. Inf. Comput. Sci., vol. 9, pp. 4691–4697, 2012.

[42] P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, “Network monitoring
in software-defined networking: A review,” IEEE Systems Journal,
vol. 12, no. 4, pp. 3958–3969, 2018.

[43] A. Botta, A. Dainotti, and A. Pescapè, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[44] tc-netem - linux. [Online]. Available: http://man7.org/linux/man-
pages/man8/tc-netem.8.html

[45] RFC 5880 - bidirectional forwarding detection. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc5880


