
Real-time Pipeline Reconfiguration of P4
Programmable Switches to Efficiently Detect and

Mitigate DDoS Attacks
Amir Al Sadi∗, Marco Savi‡, Davide Berardi∗, Andrea Melis∗, Marco Prandini∗, Franco Callegati∗

∗Department of Computer Science and Engineering - DISI - University of Bologna (Bologna, Italy)
‡Department of Informatics, Systems and Communication - DISCo - University of Milano-Bicocca (Milano, Italy)

Abstract—In this work we demonstrate the integration of
P4 enabled switches with high level AI techniques with the
aim to improve efficiency and performance of DDoS detection
and mitigation. Powerful ML-based strategies are adopted only
when a suspicious behaviour is occurring in the network, and
its activation is triggered by a coarser-grained and lightweight
strategy fully executable in the data plane.

I. INTRODUCTION

Distributed Denial of Service detection and mitigation is
still a very complex topic to deal with. First of all prompt and
automated detection [1] is required, followed by strategies to
implement effective countermeasures, all of which is also not
trivial. In this work we combine AI and Software Defined Net-
working to achieve both detection and mitigation by network
reconfiguration in an original way.

The use of Machine Learning techniques for the reconfig-
uration of SDN networks is widely used in today literature,
both for cybersecurity-oriented solutions for attack mitigation
[2], [3], [4], and for QoS guarantee by redistributing the
workload traffic [5], [6], [7]. The main issue in using AI
for DDoS detection is the challenge to provide a detailed
and meaningful traffic analysis for anomaly detection at line
rate. This is the issue we address in this demonstration, which
has the goal to show the effectiveness of adopting P4-based
programmable data planes and P4Runtime for real-time switch
reconfiguration, combined with fine-grained Machine Learning
(ML)-based logic when an abnormal behaviour is identified.

II. CONTEXT

The demonstration proposed in this work is built exploiting
P4 programmable switches and P4Runtime to master the
reconfiguration of such switches in real time.

The P4 language allows to program in detail the forwarding
behavior of P4 enabled switches (also called the forwarding
pipeline), as well to analyse, modify and process packets at
line rate in the switches. As a companion to P4 the P4Runtime
API has been developed with the aim to:

• enabling run-time control of P4-defined switches;
• defining program-independent interaction (the API does

not change if the P4 program is modified);
• enabling to push a new P4 program without recompiling

the switch software stack.

It adheres to a client-server model; the server resides in the
data plane, integrated within the switch, while the client can
be integrated into a local or remote control plane component
which interacts with the server to load the pipeline/P4 pro-
gram, write and read pipeline state (e.g. table entries, meters,
groups, etc.) and sends/receives packets.

To achieve the goals of this demonstration we implemented
a control plane components that integrates the P4runtime
client. It behaves as a high level controller which has access
to a library of switch programming options and can install
and/or modify them in real time according to the needs.

In particular with reference to DDoS this capability to
change the P4 pipeline at run-time can improve:

1) detection effectiveness, since it is possible to introduce
specific policies on the data plane to counteract specific
attacks while they are observed at run-time;

2) reaction cost and efficiency, since it is possible to restore
the network pipeline and reset the standard forwarding
behaviour after the attack is mitigated.

III. DEMONSTRATION USE CASE DESCRIPTION AND
ARCHITECTURE

The specific use case presented in this demo is designed
to provide a solution to detect and mitigate network DDoS
attacks as follows:

• the P4 switches are enabled at start-up with a P4 program
that can calculate some simple statistics aiming at provid-
ing a coarse detection capability of network anomalies;

• if this P4 program detects some network flow which
sounds suspicious it triggers the control plane that will
use the P4runtime interface to re-program the switch in
order to collect fine grained statistics that are fed back to
the control plane;

• an AI engine based on CNN will retrieve the fine grained
statistics from the control plane to provide a deeper
analysis of the suspicious flow;

• if the AI engine confirms a malicious behavior the control
plane installs a new P4 traffic dropping rule that stops the
malicious flow, thus enabling DDoS mitigation.

Key to achieve the aforementioned goals are:
1) Real-time data plane pipeline reconfiguration This

mechanism is enabled by P4Runtime and is used to
modify at run-time the behavior of the switch.

Monitor flows

Send information
about suspect flows

to the data plane

Receives information
about suspect flows
from the data plane

Drops malicious flows
on the data plane

using CNN information

Sends list of suspect
flows to control plane

Analyse traffic

Control Plane

Data Plane

Retrieves traffic
information

from data plane

CNN

Stage 2

Fig. 1. Architectural blocks of the prototype

2) Coarse traffic flow anomaly detection A basic sketch-
based strategy is used to detect whether a possible DDoS
attack is occurring.

3) Interaction between programmable data plane and a
supervised CNN engine: This is achieved by extracting
aggregated features on packets/flows from the data plane
by means of a custom P4 program and then feed them to
an external AI engine (CNN) to infer with more accuracy
abnormal behaviours in the data plane.

Figure 1 shows the three architectural components of the
system, the Data Plane, the Control Plane and the CNN and
their logical interaction.

A. Coarse anomaly detection in the data plane

The coarse anomaly detection mechanism in the data plane
uses a strategy which relies on flow classification based on the
packets that traverse the switch. In particular an Asymmetric
flow detection algorithm is used. This technique is defined
by observing the behaviour of a DDoS attack, which usually
generates a large number of packets - e.g. SYN attacks -
that try to establish a connection without being successful.
Asymmetric flow detection counts and compares the number of
packets sent from a source IP to a destination IP (tuple {source
IP, destination IP} is identified as flow) and the ones sent in
the opposite direction. The difference between the number of
packets in the two directions in a given time interval provides
the asymmetry rate between the flows. If the absolute value is
greater than a specific threshold, the flow is labelled as suspect
and stored in a P4 register.

From the implementation point of view the algorithm ex-
ploits Count-min sketch, a data structure which is used to
estimate the number of occurrences in a data stream, here used
to sum up the number of packets per flow in any direction.
We adopt this compact data structure because storing per-flow

counters in P4 registers would be intractable from a memory
consumption perspective. The sketch-based asymmetry flow
detection strategy is used to identify suspect DDoS flows.
From now we will refer to this combined strategy as Asym-
metric Count-min Sketch.

B. Fine grain detection of DDoS flows
The AI engine that will perfoorm finer data flow anomaly

detection is based on a Convolutional Neural Network similar
to what proposed in [8]. It is designed to aggregate and process
features coming from the control plane. The output of the
neural network is a value indicating the probability of any
flow being part of a DDoS attack. If the percentage is above
50%, the engine triggers a warning and forwards the flow’s
packets to the control plane, which adds a matching rule to
the data plane that drops the flow (mitigation operation).

IV. PERFORMANCE EVALUATION

We argue that the architecture proposed and the modules
developed for this demonstration may achieve realistic per-
formance for the use case of DDoS, both from a resource
consumption and from a detection capability point of view.
The use case was simulated in a virtual environment: the
single-switch emulated network runs on Mininet [9], and
BMv2 [10] is the considered P4 softwared switch target.
The CNN is developed using the Keras API [11] on top of
TensorFlow [12]. All the tests were run in a Ubuntu 20.04
LTS PC with a 16GB of RAM and an i5 8th generation Intel
processor.

A. Resource consumption
We designed two tests to monitor the memory and CPU

usage of the emulated switch considering an attack lasting
6 minutes, taken from the CICIDS2017 [13] dataset. We
decided to cap the virtual bandwidth limited to 30Mbps, to
avoid bottlenecks due to BMv2. We used Tcpreplay [14] to
simulate a 100Mbps DDoS attack mixed with normal traffic.
We evaluated the percentage of memory and CPU used by the
CNN to analyze traffic in two different cases:

• Analyses of the entire traffic (labeled as ”Traffic not
filtered”). This is our baseline, considering a scenario
where a data-control plane interaction constantly occurs.

• Analyses of traffic filtered by Stage 1 (labeled as ”Filtered
traffic”) only. This is exactly what our two-stage proposed
strategy enables.

As we can see from Figure 2, the memory consumed by
the CNN process is way less when only the filtered traffic
is analyzed. This is only possible if our two-stage strategy is
considered, i.e., Stage 2 is activated and the custom P4 pipeline
is installed in the data plane, allowing data aggregation. Figure
3 shows instead how CPU spikes last around twice in the
case of unfiltered traffic, consuming on average more CPU
while the attack is taking place. This means that our two-
stage strategy saves CPU consumption with respect to the
baseline. Moreover, during this tests we registered around
0.25% losses for about 1 second when the pipeline needed
to be re-configured, which we consider as acceptable.

	2

	2.5

	3

	3.5

	4

	4.5

	5

	0 	50 	100 	150 	200 	250 	300

M
em

or
y	
us
ag

e	
(%

)

Time(s)

Filtered	traffic
Traffic	not	filtered

Fig. 2. Memory usage (%) throughout the attack

	0

	20

	40

	60

	80

	100

	120

	0 	50 	100 	150 	200 	250 	300 	350 	400 	450

CP
U	
us
ag

e	
(%

)

Time(s)

Filtered	traffic
Traffic	not	filtered

Fig. 3. CPU usage (%) throughout the attack

B. Detection capability

We designed three tests that use different asymmetry rates
thresholds: 250, 500 and 1000 packets. Given the dataset (57
malicious IPs - true positives - and 512 benign - true nega-
tives), we focused on the DDoS detection strategies of stages
1 and 2 and compared the false positives, false negatives,
precision, recall, F1 score. Every stage lasts 30 seconds.

Table I shows that carefully choosing the asymmetry rate
threshold is vital to be able to avoid false negatives. In fact,
ideally stage 1 should avoid any false negative, while false
positive can be tolerated. The adoption of the heavier strategy
using CNN in stage 2 is then crucial to identify any false
positive occurring in stage 1 and efficiently prune them, as well
as to identify malicious sources. In the case of an asymmetry
rate threshold of 1000 packets, we can see how 3 IPs (5% of
the 57 malicious IPs) were not detected by the scheme. On
the other hand, setting the threshold to 250 resulted in more
false positives and more noise in the CNN, which was not
able to detect two malicious IPs. Overall, both stage 1 and 2
have lead to an F1 score of at least 88%, and the F1 is higher

Stage THR FN FP Precision Recall F1 Score
1 (In-line) 250 0 14 80% 100% 88%

2 (With CNN) 250 0 2 96% 100% 97%
1 (In-line) 500 0 7 89% 100% 94%

2 (With CNN) 500 0 0 100% 100% 100%
1 (In-line) 1000 3 6 90% 95% 92%

2 (With CNN) 1000 3 0 100% 95% 97%
TABLE I

DETECTION RATE COMPARISON WITH DIFFERENT THRESHOLD.

when the CNN is involved.

V. CONCLUSION

In this paper we demonstrated that it is possible to exploit
real time data plane re-configuration to enhance detection and
mitigation of DDoS attacks.

These results are achieved with P4 as a device program-
ming language, with the P4Runtime protocol as device re-
configuration protocol and with a controller developed on
purpose; a combination that enables the re-configuration of
the data plane pipeline at run-time.

REFERENCES

[1] A. Melis, D. Berardi, C. Contoli, F. Callegati, F. Esposito, and M. Pran-
dini, “A policy checker approach for secure industrial sdn,” in 2018 2nd
Cyber Security in Networking Conference (CSNet), 2018, pp. 1–7.

[2] A. Melis, S. Layeghy, D. Berardi, M. Portmann, M. Prandini, and F. Cal-
legati, “P-scor: Integration of constraint programming orchestration and
programmable data plane,” IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 402–414, 2020.

[3] D. Ding, M. Savi, F. Pederzolli, M. Campanella, and D. Siracusa,
“In-network volumetric ddos victim identification using programmable
commodity switches,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1191–1202, 2021.

[4] A. da Silveira Ilha, A. C. Lapolli, J. A. Marques, and L. P. Gaspary,
“Euclid: A fully in-network, p4-based approach for real-time ddos attack
detection and mitigation,” IEEE Transactions on Network and Service
Management, vol. 18, no. 3, pp. 3121–3139, 2020.

[5] H. Song, S. Guo, P. Li, and G. Liu, “Fcnr: fast and consistent network
reconfiguration with low latency for sdn,” Computer Networks, vol. 193,
p. 108113, 2021.

[6] A. Destounis, S. Paris, L. Maggi, G. S. Paschos, and J. Leguay,
“Minimum cost sdn routing with reconfiguration frequency constraints,”
IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1577–1590,
2018.

[7] S. Troia, R. Alvizu, and G. Maier, “Reinforcement learning for service
function chain reconfiguration in nfv-sdn metro-core optical networks,”
IEEE Access, vol. 7, pp. 167 944–167 957, 2019.

[8] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martı́nez-del Rincón,
and D. Siracusa, “Lucid: A practical, lightweight deep learning solution
for ddos attack detection,” IEEE Transactions on Network and Service
Management, vol. 17, no. 2, pp. 876–889, 2020.

[9] K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as software defined
networking testing platform,” in International conference on communi-
cation, computing & systems (ICCCS), 2014, pp. 139–42.

[10] P. L. Consortium et al., “p4lang/behavioral-model,” 2019.
[11] N. Ketkar, “Introduction to keras,” in Deep learning with Python.

Springer, 2017, pp. 97–111.
[12] M. Abadi, “Tensorflow: learning functions at scale,” in Proceedings

of the 21st ACM SIGPLAN International Conference on Functional
Programming, 2016, pp. 1–1.

[13] “Cicids2017 dataset,” https://www.unb.ca/cic/datasets/ids-2017.html.
[14] A. Turner, “Tcpreplay,” http://tcpreplay. synfin. net/trac/, 2011.

