
TROIA S. ET AL, COMPUTER NETWORKS, 2023 1

Performance Characterization and Profiling
of Chained CPU-bound Virtual Network Functions
Sebastian Troia, Marco Savi, Giulia Nava, Ligia Maria Moreira Zorello, Thomas Schneider and Guido Maier

Abstract—The increased demand for high-quality Internet
connectivity resulting from the growing number of connected
devices and advanced services has put significant strain on
telecommunication networks. In response, cutting-edge technolo-
gies such as Network Function Virtualization (NFV) and Software
Defined Networking (SDN) have been introduced to transform
network infrastructure. These innovative solutions offer dynamic,
efficient, and easily manageable networks that surpass traditional
approaches. To fully realize the benefits of NFV and maintain the
performance level of specialized equipment, it is critical to assess
the behavior of Virtual Network Functions (VNFs) and the impact
of virtualization overhead. This paper delves into understanding
how various factors such as resource allocation, consumption,
and traffic load impact the performance of VNFs. We aim to
provide a detailed analysis of these factors and develop analytical
functions to accurately describe their impact. By testing VNFs on
different testbeds, we identify the key parameters and trends, and
develop models to generalize VNF behavior. Our results highlight
the negative impact of resource saturation on performance and
identify the CPU as the main bottleneck. We also propose a VNF
profiling procedure as a solution to model the observed trends and
test more complex VNFs deployment scenarios to evaluate the
impact of interconnection, co-location, and NFV infrastructure
on performance.

Index Terms—Network Function Virtualization, Software De-
fined Networking, Virtual Network Function, Service Function
Chain, Profiling, Monitoring, Virtual Router, Virtual Firewall

I. INTRODUCTION

Network Function Virtualization (NFV) is a game-changing
technology that empowers digital transformation. It allows
service providers to replace traditional, proprietary specialized
hardware systems such as routers, firewalls, and Customer
Premises Equipments (CPEs) with virtualized functions that
are easy to upgrade and maintain. This means that new services
can be quickly and efficiently rolled out, resulting in increased
profits for providers.

NFV revolutionizes the way service providers manage their
networks by transferring intelligence and workloads into soft-
ware. This allows providers to easily and efficiently scale
their Information Technology (IT) and network resources to
meet changing traffic and service usage demands. With its
immense commercial value and crucial role in the evolution

Sebastian Troia and Guido Maier are with the Department of Electronics,
Information and Bioengineering (DEIB), Politecnico Di Milano, Italy.

Ligia Maria Moreira Zorello and Giulia Nava were with the Department of
Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano,
Italy.

Marco Savi is with the Department of Informatics, Systems and Commu-
nication (DISCo), University of Milano-Bicocca, Italy.

Thomas Schneider is with ADVA Optical Networking, Munich, Germany.
Corresponding author: Sebastian Troia, e-mail: sebastian.troia@polimi.it

of telecommunications networks, NFV has become a vital part
of operator’s development strategies. The global NFV market
has seen tremendous growth in the past years, and is expected
to continue to soar with a projected Compounded Average
Growth Rate (CAGR) of 28% from 2022-2026 [1]. This
growth is further propelled by the advent of 5G technology
and the rise in services and applications with rigorous and
varied performance requirements such as cloud computing
and Internet of Things (IoT). Instead of relying on dedicated
hardware, traditional network functions are now performed by
software running on commercial-off-the-shelf servers.

The introduction of new services and technologies requires
a major upgrade to the existing network architecture to meet
their performance needs. Virtual Network Functions (VNFs),
or virtualized network services that run on open computing
platforms, offer a flexible solution. These VNFs can be de-
ployed and configured in various ways, giving operators the
ability to allocate and scale resources on demand, unlike tradi-
tional isolated physical appliances. However, the performance
of VNFs can be unpredictable and can depend on various
factors such as resource configuration, traffic load and un-
derlying hardware characteristics. The virtualization overhead
can also lead to bottlenecks, which can negatively impact
Quality of Service (QoS) and degrade service performance.
The operator needs to be aware of these potential performance
issues and work to mitigate them to ensure a smooth and
reliable service experience. Proper resource planning, such
as scaling, requires a clear understanding of the relationship
between resources and VNF performance. This allows for
more accurate predictions of how many VNF instances to
deploy or how many resources to allocate, instead of relying
on time-consuming and inefficient trial and error methods.

This paper delves into the impact of resource allocation,
resource consumption, and traffic load on VNF performance,
using various metrics. The goal is to provide a Testing Tool
(TT) able to perform a detailed analysis of how different
factors affect VNF performance, and to develop analytical
functions that can accurately describe this impact. The pro-
posed TT offers the opportunity to test heterogeneous VNFs
under different input workload features and traffic load, while
identifying the VNFs resource consumption and the maximum
QoS level that can be guaranteed. It also helps to analyze the
VNF behaviour starting from the observation of the collected
samples. By exploiting the obtained results, the trends of
each tested VNF are described as a function of the resource
allocation and consumption. Then, VNF profiling is proposed
as a solution to model the observed trends. It provides a model
to accurately describe how the specific VNF reacts under a

TROIA S. ET AL, COMPUTER NETWORKS, 2023 2

certain amount of workload and in a specific configuration. To
validate our model, we perform different tests by exploiting
multiple VNFs on both commercial testbeds provided by
ADVA company1 and experimental testbeds at the BONSAI
lab2 of Politecnico di Milano. The experiments include two
scenarios: stand-alone VNFs and Service Function Chains
(SFCs). The first scenario examines the impact of individual
carrier-grade VNFs, while the second allows for the evaluation
of the impact of multiple chained VNFs on the same server.

The remainder of this paper is organized as follows: In
Section II, we provide an in-depth review of the existing
research in the field of virtualized network functions (VNFs)
and service function chains (SFCs) testing. This section is
divided into three sub-sections, covering VNF performance
characterization, VNF and SFC profiling, and testing tools
for performance characterization and profiling. In Section III,
we present the proposed testing tool architecture, including
its different components and their functionalities. In Section
IV, we describe the two testbeds used for conducting the
experiments, including their configurations and limitations.
Section V provides a detailed overview of the VNFs and SFCs
used in this work and the challenges associated with testing
them. In Section VI, we present the results of the experimental
evaluation of our testing tool, including the test scenarios and
performance metrics used in the evaluation. Finally, Section
VII concludes the paper.

II. RELATED WORK

In this section we focus on the related work. At first,
we report existing research works dealing with performance
characterization of VNFs. Then, we focus on VNFs’ and
SFCs’ profiling. Finally, we discuss the most relevant testing
tools that have been developed for both performance charac-
terization and profiling.

A. VNF performance characterization

Ref. [2] focuses on the existing dependency between in-
troduced processing delay as a function of processing virtual
resources assigned to a VNF. Even though the introduced
delay strongly depends on specific VNF implementations and
underlying hardware, they assume a common trend where the
higher the resources assigned, the lower the delay. However,
they consider the existence of a saturation point, where delay
is not further reduced by assigning processing resources above
a threshold. Ref. [3] start from similar assumptions, as in
[2], but focusing on exploiting such information to optimize
VNFs placement, with the goal of meeting QoS service
thresholds. Our research supports these findings and confirms
the assumptions made by the authors in [2] and [3].

An important aspect is the impact of the VNF type on
resource consumption and performance. To investigate this
aspect, different VNFs have been studied in the literature.
Ref. [4] tests the performance of a virtual router, deployed on
a Kernel-based Virtual Machine (KVM) hypervisor environ-
ment. The authors identify the main throughput bottlenecks

1Weblink (last access 14/04/2023): https://www.adva.com/
2Weblink (last access 14/04/2023): https://www.bonsai.deib.polimi.it/

on the underlying infrastructure, which can have a negative
influence on latency. Ref. [5] focuses on the performance of
a virtual firewall. The authors investigate the service perfor-
mance degradation that virtualization introduces compared to
the traditional use of dedicated hardware. Ref. [6] evaluates
the performance of a Firewall, an Intrusion Detection System
(IDS), and a Network Address Translator (NAT) when de-
ployed as Amazon EC2 Cloud instances. The analyzed metrics
are resource utilization (in terms of CPU, memory and disk
occupation), and packet loss percentage. The results obtained
show that CPU is most likely to become a bottleneck causing
performance degradation when it reaches the saturation level.
VNFs that experience this behaviour are called CPU-bound
VNFs. Furthermore, input packet rate is shown to be the
determining factor in the VNFs performance as it is the most
important parameter impacting on CPU consumption. Our
work focuses on the performance characterization of a virtual
router and of a virtual firewall (both CPU-bound VNFs) but,
with respect to the previous works, it adds a more extensive
analysis with respect to metrics such as throughput, delay and
packet loss.

B. VNF and SFC profiling

1) VNF Profiling: VNF profiling is proposed as an effective
strategy to enhance the awareness of network operators when
deploying VNFs in a highly dynamic and complex environ-
ment as an NFV infrastructure. By profiling VNFs’ perfor-
mance and resource consumption, it is possible to know in
advance (i.e., before VNF deployment) the maximum amount
of traffic that can be forwarded to a VNF instance while
ensuring that a desired QoS service threshold is guaranteed.

Ref. [7] profiles the performance of four VNFs: virtual
router, virtual firewall, Open vSwitch (OVS)3. and a Squid
Cache server4. These functions are tested under a varying
workload and different resource configurations. To collect data
for profiling, each Device Under Test (DUT) is subjected to an
increasing input workload. Starting from the gathered samples,
the profiling models are trained using different techniques,
such as Linear Regression, k-Nearest Neighbours, Interpola-
tion, Artificial Neural Networks (ANN) and Curve Fit, with
the latter being the one performing best.

Similar approaches using Machine Learning (ML) tech-
niques are adopted in Refs. [8] [9]. These works focus on
the need of estimating in an automated way the VNFs’
CPU consumption as a function of the input traffic. Ref. [8]
focuses on the characterization of the CPU usage (i.e., VNF’s
CPU profile) of OVS and Snort5. The authors exploit ANNs
to create the VNF profile. Ref. [9] uses different methods

3Weblink (last access 14/04/2023): https://www.openvswitch.org/. Open
vSwitch is a high-quality, multi-layer virtual switch that is available under
the open-source Apache 2.0 license.

4Weblink (last access 14/04/2023): http://www.squid-cache.org/. Squid acts
as a caching proxy for the Web and can handle HTTP, HTTPS, FTP and other
protocols. By caching frequently requested web pages, it decreases bandwidth
usage and enhances response speed.

5Weblink (last access 14/04/2023): https://www.snort.org/. Snort is an Open
Source Intrusion Prevention System (IPS). This IPS operates through the
utilization of a series of rules, which are designed to identify malicious
network activity.

TROIA S. ET AL, COMPUTER NETWORKS, 2023 3

to achieve the exact same goal, namely Linear Regression,
Support Vector Regression (SVR), Decision Trees, Ensemble
Learning and Neural Networks. Two different VNFs are tested
and profiled: a Squid Cache and a Nginx Proxy.

Ref. [10] focuses on profiling the maximum throughput
achievable under different CPU resource configurations for
some software application: a Nginx with Apache Web Server,
a Video Encoder with a Database and Snort. For the Web
Server, Video Encoder and Database, the performance metric
evaluated are the number of requests per second, the number
of frames per second and the response time, respectively. The
results show that the impact of the available CPU resources on
throughput depends not only on the considered application, but
also on the different possible configuration of each application.

Our work builds upon previous research by expanding the
scope of performance metrics to be evaluated in relation to
the input rate. We focus on three key metrics: packet loss,
end-to-end delay and throughput. Previous studies have only
examined a subset of these metrics, but by looking at all of
them together, we can create more comprehensive profiles of
VNFs.

2) SFC profiling: The previously mentioned VNF profiling
approaches assume that VNFs perform the same way whether
they are standalone components or interconnected to form an
SFC. However, research studies in Refs. [11] [12] [13] [14]
[15] have shown that the performance of chained VNFs can
differ from that of standalone VNFs. It is crucial to take this
into account when profiling both individual VNFs and the SFC
as a whole.

Ref. [11] presents an SFC profiling system that includes the
components necessary for performing the desired profiling.
The system is validated using a linear chain including the
Nginx TCP load balancer, the TCP relay Socat, and the
Squid Proxy. Similarly, Ref. [12] tests a video streaming SFC
in standalone and chaining scenarios, using Support Vector
Regression and Polynomial Regression techniques to predict
the minimum required vCPUs for a video encoder and a Squid
cache. The results obtained with standalone VNFs are then
compared to those obtained in the chaining scenario, showing
a deviation in the expected CPU consumption of the cache
component.

Ref. [13] presents a profiling model for an SFC composed of
three functional blocks: a load balancer, a file server, and the
client. The goal is to create a model that predicts the number
of server instances required to meet a specific workload and
QoS target. Various methods are used for profiling, including
ANNs, Lasso, Random Forest, Multivariate Linear Interpola-
tion, and Multi Lasso.

Ref. [14] presents an alternative approach, i.e. a two-step
deployment workflow. At first, it uses VNF standalone profiles
to make an initial estimation of resource allocation and SFC
performance, and then updates them in a second phase using
online data collected from the SFC. Four VNFs are tested: a
load balancer, a proxy server, a firewall, and a virtual switch.
The models are trained using ANNs, Lasso, and Multi Lasso.

Ref. [15] introduces an automated analysis system that
can detect any abnormal behavior of the VNFs. The authors
conduct tests with various combinations of VNFs to see how

the addition of a new component can affect overall service
performance. Although the authors do not focus on SFC
profiling, the results demonstrate a significant deviation from
expected behavior as more VNFs are added, highlighting the
need for appropriate SFC profiling when multiple VNFs are
chained together.

Building on previous research, we propose a testing tool that
allows for the characterization and profiling of chains of VNFs
with various topologies, while also highlighting differences
with standalone deployment scenarios.

C. Testing tools for performance characterization and profil-
ing

A number of studies in literature have proposed testing
tools for the characterization and profiling of VNFs and SFCs.
Having a well-designed testing tool is crucial as it enables the
characterization and profiling of a wide range of VNFs and
SFCs in an automated or semi-automated manner, something
that is not possible with the results-oriented and highly specific
studies reported in previous sections.

Ref. [16] proposes a framework for VNF testing, with the
goal of retrieving the VNF configuration that leads to the best
performance, for instance in terms of Virtual Machine (VM)
size, while Ref. [17] proposes a framework for VNF perfor-
mance profile construction similar to the one proposed by our
work. While such paper focuses only on VNF performance
characterization, in this work we propose a VNF/SFC testing
tool that also provides valuable profiling functionalities. In-
stead of solely focusing on VNF performance characterization
like the aforementioned study, we take a holistic approach
by considering a variety of performance metrics such as end-
to-end delay, throughput, and packet loss. Our proposed tool
provides the user with the capability to optimize different
Virtual Network Functions (VNFs) in a more comprehensive
manner, thereby resulting in improved overall performance.
Moreover, the main difference with our proposal is that our
testing tool is testbed-agnostic, and that we have adopted it
to characterize and profile two different VNFs (i.e., a virtual
router and a virtual firewall) on two different testbeds.

Ref. [18] proposes a more comprehensive framework that
embeds a set of reusable VNF testing procedures and sim-
plifies the operations to be performed for VNF performance
and profile characterization. The framework’s functionalities
are demonstrated in Ref. [19]. Ref. [20] presents a new
tool for VNF scalability (scale up/out) and energy efficiency
benchmarking. This is very important for ensuring a correct
dimensioning of the VNFs to be deployed. Although relevant,
we do not consider this aspect; we instead focus on testing
the performance of VNFs that have already been dimensioned.
Ref. [21] presents a tool that enables the correlation of VNF
performance with node resource utilization. However, the
authors acknowledge that the tool has only been tested on a
small testbed and its evaluation did not encompass real-world
VNFs. Ref. [22] proposes a ML-based system to automate
the detection of defects and bugs in VNFs by identifying
performance degradation. In our work we do not perform VNF
testing from a functional perspective, while we deeply focus
on non-functional tests.

TROIA S. ET AL, COMPUTER NETWORKS, 2023 4

Testing Tool

Monitoring

System

Profiling

System

Testing Environment

Traffic

Sender

VNF/SFC

Under Test

Traffic

Receiver

Configuration

Log Files

Test ResultsTest Parameters

Test Results

Profiling Function(s)
VNF(s) Profile

Traffic Traffic

Configuration

Log Files
CPU Measurements

Fig. 1. Pictorial view of the Testing Tool architecture.

Ref. [11] is instead among the first works proposing a tool
for SFC profiling. Ref. [23] proposes a framework similar to
that of Ref. [11], but it is focused on performance characteriza-
tion more than on SFC profiling. An important added value of
Ref. [23] is that it characterizes SFC performance considering
different hardware topologies. However, one limitation is that
it only considers a linear SFC, limitation that we overcome in
this work.

D. Paper Contribution

Our work builds upon the existing literature on VNF per-
formance characterization and profiling, but it extends it in
several ways. We focus on the performance characterization
of a virtual router and a virtual firewall, which are both CPU-
bound VNFs, but we conduct a more extensive analysis with
respect to metrics such as throughput, delay, and packet loss.
This is different from Refs. [4]–[6] which mainly investigate
the impact of VNF types on resource consumption and per-
formance, but do not provide a comprehensive analysis of
the VNF performance. Then, we propose a novel approach to
estimate the VNFs’ CPU consumption. Our approach is able
to accurately state the CPU usage of both virtual router and
virtual firewall under different workloads, while minimizing
the need for extensive profiling. This is in contrast to Refs. [7]–
[9], which mainly focus on profiling techniques to estimate the
VNF performance. Overall, our work provides a more com-
prehensive and accurate analysis of the performance of CPU-
bound VNFs, and proposes a novel approach to estimate their
CPU consumption. Additionally, we highlight the importance
of resource allocation strategies to improve VNF performance
in NFV environments.

III. TESTING TOOL ARCHITECTURE

In this section we describe the proposed Testing Tool
(TT) for CPU-bound VNF/SFC performance monitoring and
profiling. The TT is designed to be deployed on an NFV
Testing Environment (TE). Figure 1 depicts a high-level view
of the TT architecture and its interaction with the TE. The
TT collects log files from the TE’s nodes that are in charge

of generating (Traffic Sender) and receiving (Traffic Receiver)
the network traffic processed by the VNF or SFC under test,
which is treated as a black box. Additionally, it receives
measurements related to consumed CPU as recorded and
stored by the TE.

As shown in Figure 1, the TT includes two sub-components:
the Monitoring System and the Profiling System. The Monitor-
ing System is in charge of processing data collected from the
TE and of providing the user with the processed test results.
These processed data are also provided as input to the Profiling
System, together with some pre-defined profiling functions as
selected by the user. These inputs are used for VNF profiling,
and the obtained VNF profile(s) are output to the user. The
user can also specify some test parameters (e.g. test duration,
amount of virtual resources to be dedicated to the VNF
under test, etc.) that drive the most appropriate configuration
of all the nodes/components involved in the test execution
(i.e., Traffic Sender, Traffic Receiver, VNF/SFC Under Test,
Monitoring System), so that specific behaviours can be tested.
The TT was designed and developed as an external component
with respect to the TE, to which it seamlessly interfaces with
the TE to gather crucial data and measurements. In this paper
we adopt our tool to test VNFs/SFCs deployed in two different
TEs, whose details will be provided in Section IV. More
details on Monitoring and Profiling Systems are provided in
the next subsections.

A. Monitoring System
The Monitoring System provides an automatic and easily

configurable tool for retrieving performance samples of the
VNFs and SFCs under test. It can be used to test any CPU-
bound VNF prior its deployment, characterizing its behaviour
and defining the maximum workload that can be processed
without affecting the running service. The tool, developed
in Python programming language, tests the VNF/SFC per-
formance by analyzing three metrics as a function of the
VNF/SFC input rate. The three considered metrics are: packet
loss (i.e., the amount of packets that are discarded), throughput
(i.e., the amount of processed data per time unit), and end-
to-end delay (i.e., the time needed by a generated packet to
reach the destination while traversing the VNF/SFC). A fourth
considered parameter is the VNF’s CPU consumption on the
TE. The latter is collected as a function of the input rate and,
although not directly linked to VNF/SFC performance, it is
fundamental to evaluate CPU-bound VNFs.

Going more into detail, three functionalities are guaranteed
by the Monitoring System:

• Test parameters gathering: The user can specify the set
of parameters necessary to perform the desired tests.
Among the most relevant parameters, we can mention
the duration of each test, the packets’ size, the transport
protocol to use, the number of concurrent flows to be
generated and the range of input traffic rates to test. As
parameter, it is also possible to specify that a bursty traffic
scenario has to be tested. In this case, the user must also
specify the duty cycle (i.e., ON and OFF periods).

• Traffic generation and measurement: The Monitoring
System initiates the traffic generation process. To this

TROIA S. ET AL, COMPUTER NETWORKS, 2023 5

Monitoring System

Traffic Sender

Workload

ITGLog

ITGSend

Traffic Receiver

ITGRecvVNF/SFC

Under TestControl Data

Control Data

Control Data

Workload

Control Data

Log dataLog data

Fig. 2. Adoption of D-ITG modules in the TT [27].

aim, it exploits two open-source tools that are (partially)
deployed in the TE: Distributed Internet Traffic Generator
(D-ITG) [24] and the well-known UNIX System Activity
Reporter (SAR). D-ITG requires an agent to be installed
on the nodes of the TE acting as Traffic Sender and
Traffic Receiver. SAR must be deployed only on the
Traffic Sender and it is used to measure the actual traffic
generated by the D-ITG sender agent (i.e., the VNF/SFC
input rate). All the generated data is stored in log files.
Based on the evaluation from the authors in [25] [26],
we preferred to use D-ITG [24] as traffic generator
as it guarantees higher performance compared to other
software traffic generators6. Moreover, D-ITG makes it
possible to easily measure the One-Way Delay (OWD)
and Round-Trip Time (RTT) of each packet transmitted,
and it is capable of generating packets according to
patterns following a variety of probability distributions
(such as uniform, exponential and normal) and using
specific transport protocols (e.g. UDP, TCP, ICMP). To
avoid any error due to incorrect synchronization among
the sender and receiver nodes and ease the tool implemen-
tation and deployment, we decided to set up a two-way
communication channel and to estimate the OWD as half
of the RTT. How D-ITG is used as part of the TT is
illustrated in Fig. 2. Specifically, the following D-ITG’s
modules are adopted:

– ITGSend: it is responsible for traffic generation.
It can operate in single-flow or multi-flow mode.
The TT uses the multi-flow mode, so that multiple
concurrent flows are generated to better test the
VNF/SFC behaviour. ITGSend agent is embedded in
the Traffic Sender.

– ITGRecv: it is in charge of receiving the packets as
generated by ITGSend. It is embedded in the Traffic
Receiver.

– ITGLog: it is responsible for storing all the log
information on the traffic and flows, including mea-
surements related to packet loss, throughput and
end-to-end delay. It is embedded in the Monitoring
System.

Additionally, measurements related to the VNFs CPU
consumption are sampled and collected by the TE. To

6We would like to remind the reader that evaluating and comparing different
traffic generators is beyond the scope of this work.

do so, Testing-Environment-specific tools are used, as we
will show in Section IV.

Algorithm 1 Monitoring System workflow
Require: test traffic parameters

Ensure: V NF performance characterization, saturation point
1: t← duration of a single test

2: nflows ← number of flows

3: p← protocol
4: psize ← packets size

5: Sallsamples ← empty set of samples

6: if traffic is constant then
7: R← set of input rates to test

8: Sstatistics ← empty set of average samples
9: for r in R do

10: generate traffic with rate r on each flow for t seconds

11: use Paramiko to retrieve receiver log
12: compute input rate, throughput, end − to −

end delay and packet loss

13: i← input rate samples
14: o← throughput samples

15: p← packet loss samples

16: d← delay samples
17: imean, omean, pmean, dmean ←

compute mean of metrics

18: Sallsamples.append(i, o, p, d)
19: Sstatistics.append(imean, omean, pmean, dmean)

20: generate plots from Sstatistics

21: start the profiling procedure

22: else if traffic is bursty then
23: Tpattern ← traffic pattern

24: generate traffic according to Tpattern

25: use Paramiko to retrieve receiver log

26: compute input rate, throughput, end − to −
end delay and packet loss

27: i← input rate samples

28: o← throughput samples

29: p← packet loss samples
30: d← delay samples

31: Sallsamples.append(i, o, p, d)

32: generate plots from Sallsamples

33: return samples datasets

• Data gathering and elaboration: The Monitoring System
collects the Traffic Sender and Traffic Receiver log files
as well as CPU consumption measurement from the
TE, elaborates them and saves the results in Comma-
Separated Values (CSV) format files. These files can be
then plotted (if needed) by the user and are used as input
by the Profiling System.

1) Explanatory workflow: In this section we report an
explanatory workflow on how the Monitoring System can be
used. A pseudo-code is shown in Algorithm 1.

The user must first specify the input parameters, i.e.,
duration of a single test, number of concurrent flows, protocol
to use, packet size and traffic pattern. As specified, two types
of tests can be performed: with constant input traffic and with
bursty traffic.

In the case of constant input traffic, the minimum and
maximum input rates to test are defined in terms of packets per
second, together with a step parameter. The tool will then test
sequentially all the R traffic rates between the minimum and
maximum according to the specified step, by also taking as
input the other specified input parameters. After each test the

TROIA S. ET AL, COMPUTER NETWORKS, 2023 6

results, as collected and elaborated by the data retrieved from
the TE (e.g. D-ITG logs), are saved in CSV files. Two files are
obtained, generated respectively starting from the Sstatistics

and Sallsamples sets. Sstatistics elaborates average values over
the test duration for each tested input rate: the corresponding
average delay, packet loss, throughput, together with CPU
consumption, are recorded and stored. The Monitoring System
also allows the user to plot the graphs of the average values of
the considered metrics and CPU consumption as a function of
the input rate. Sallsamples collects instead all the fine-grained
measurements for each metric and each input rate, where a
sample is recorded every second.

In the case of bursty input traffic, a single input rate is
specified together with the duty cycle. The results obtained
for each second of the test are saved in Sallsamples. From the
file, the graphs of the performance metrics are plotted. No
average statistics are saved in Sstatistics for this specific test.

The measurements dataset Sstatistics can then be used by
the Profiling System to profile the VNFs Under Test.

2) Detailed explanation of Algorithm 1: The Monitoring
System necessitates the user to establish the input parameters
concerning the traffic pattern to be generated. These parame-
ters include the duration of a single test (line 1), the number
of concurrent flows (line 2), the protocol to be utilized (line
3), the packet size (line 4), and the traffic pattern (lines 6 and
22). It is noteworthy that the Monitoring system facilitates
two distinct types of tests - those that employ a constant input
traffic pattern and those that adopt a bursty traffic pattern.

1) For a constant input traffic (line 6), the algorithm defines
the minimum and maximum input rates to be tested
along with a step parameter (line 7). Subsequently,
the algorithm tests all the R traffic rates between the
minimum and maximum rates in a sequential manner,
incrementing the traffic rate by the specified step as in-
dicated in line 9. After each test, the algorithm retrieves
the results from the receiver log through Paramiko7, as
shown in line 11, and saves them in CSV files. In line
18, the algorithm generates a file called S_allsamples
that records fine-grained measurements for each metric
and input rate, with a sample being recorded every
second. Another set of samples, S_statistics, is obtained
in line 19, which collects the metric values (average
delay, packet loss, throughput) as the average over the
test duration for each tested input rate. Additionally,
the Monitoring System provides the functionality to plot
graphs of the average metric values and CPU consump-
tion as a function of the input rate, as indicated in line
20. Furthermore, the experiment continues in line 21
by launching the Profiling System on the measurements
dataset S_statistics to profile the VNF being tested.

2) In the case of bursty input traffic (line 22), a traffic
pattern needs to be chosen as indicated in line 23.
The results obtained for each second of the test are
saved in S_allsamples, which records the input rate (line
27), throughput samples (line 28), packet loss samples
(line 29), and delay samples (line 30). The performance

7Weblink: https://www.paramiko.org/ (last access: 14/04/2023)

metric graphs are plotted from this file in line 32. It
should be noted that no average statistics are computed
for this specific test as the focus is on the traffic pattern.

B. Profiling System

The Profiling System is in charge of analyzing the data
collected by the Monitoring System and to profile a VNF.
This makes it possible to understand the expected behavior
of a VNF, when deployed on a physical infrastructure, prior
its deployment, so that the optimal resource allocation (e.g. in
terms of vCPUs) is performed, based on the expected input
traffic.

The ultimate goal of the Profiling System is thus to elaborate
a VNF profile, starting from some pre-defined input profil-
ing functions. Starting from the measurements obtained by
the Monitoring System, the best fitting profiling function is
chosen for each performance metric and the VNF profile is
constructed. Each VNF profile is specific for (i) any VNF
implementation and (ii) underlying hardware specification and
configuration.

The VNF profiling strategy that we propose is suitable for
CPU-bound VNFs, which are very common and their salient
properties have been already well investigated in literature
[3] [6] [7]. However, a similar approach could be adopted
for VNFs whose performance is mostly affected by scarcity
of other resources (e.g. memory-bound VNFs). Our proposed
profiling strategy takes inspiration from [7]. Similarly, it
identifies two different working regions for CPU-bound VNFs:

• No CPU saturation: In this region the CPU consumption
is below its maximum. The input traffic intensity and
CPU consumption are highly correlated: an increase on
the input traffic reflects to an increase on the CPU
consumption. The processing capability is enough to
guarantee almost constant delay and throughput, with no
(or negligible) packet losses.

• CPU saturation: In this region the CPU consumption
is at its maximum. The input traffic intensity and CPU
consumption are poorly correlated, while an increase
in the input traffic reflects to higher delay and packet
losses, and to lower throughput: this means that the input
workload is highly (positively or negatively) correlated to
these performance metrics.

As we will show in Section VI, this behaviour is confirmed
for the VNFs tested in this paper. We define the input rate
leading to the border point between the two regions as CPU
saturation break-point [7]. The Profiling System models the
VNF behaviour (in terms of throughput, delay and packet
loss as a function of the input workload) with a monotonic
function. The expected output is a set of functions fm(r)
that profile the VNF, where m indicates the metric m ∈
{throughput, delay, packet loss} and r the input traffic.

The method used to obtain fm(r) is Curve Fit, as it has
been proven to provide the best accuracy with respect to other
methods such as Linear Regression or Interpolation [7]. It
consists in fitting a pre-defined set of functions f(r) to the
samples collected for each metric m and as a function of
r, to find the most accurate (i.e., the one that minimizes the

TROIA S. ET AL, COMPUTER NETWORKS, 2023 7

Algorithm 2 Profiling System workflow
Require: Sstatistics

Ensure: fm(r) with m ∈ {throughput, delay, packet loss}
1: Snonsat ← ∅
2: Ssat ← ∅
3: Identify rCPUsaturation_breakpoint

from CPUmean(r)

4: for s ∈ Sstatistics do
5: if r < rCPUsaturation_breakpoint

then
6: Snonsat.append(s)

7: else
8: Ssat.append(s)

9: Use Curve Fit method on Snonsat and Ssat

10: for m ∈ {throughput, delay, packet loss} do
11: fm,nonsat(r) ← Most accurate function on Snonsat for no CPU

saturation region for metrics m
12: fm,sat(r)← Most accurate function on Ssat CPU saturation region

for metrics m

13: Save fitted coefficients Cm for fm,nonsat(r) and fm,sat(r)

14: Define fm(r) =

{
fm,nonsat(r) No CPU saturation region

fm,sat(r) CPU saturation region

15: Plot fit functions fm(r) with m ∈ {throughput, delay, packet loss}
16: return fm(r) and Cm for m ∈ {throughput, delay, packet loss}

standard error). Curve Fit is performed independently for the
no CPU saturation and the CPU saturation regions, and the
possible profiling functions are taken from [28]. By adopting
this approach, fm(r) are piece-wise functions defined in the
following way:

fm(r) =

{
fm,nonsat(r) No CPU saturation region

fm,sat(r) CPU saturation region
(1)

fm,nonsat(r) and fm,sat(r) are the profiling functions, taken
from the set of input functions f(r), that best fit to the
collected samples, in any of the two regions, according to the
Curve Fit method.

1) Explanatory workflow: Algorithm 2 reports an explana-
tory workflow of the profiling procedure carried out by the
Profiling System. As input, the Sstatistics set, as obtained
by the Monitoring System, is given. The Profiling System
splits Sstatistics in two different subsets, Snonsat and Ssat,
according to the CPU working zone they belong to. Then,
the Curve Fit method is applied on the two subsets. The best
function, for each specific performance metric and working
region, is retrieved. The Curve Fit procedure also returns the
fitted coefficients for each chosen function, saved in CSV files
together with the name of the chosen function. The functions
can also be plotted by the Profiling System, and all together
specify the VNF profile.

2) Detailed explanation of Algorithm 2: Given the dataset
S_statistics, obtained by the Monitoring System during the
constant traffic tests, the Profiling System employs an algo-
rithmic process to identify the CPU saturation breakpoint (line
3) and subsequently segregates each sample of the dataset
into two distinct subsets, namely S_nonsat (line 1) and S_sat
(line 2), based on the CPU working zone they occupy. This
process is represented in the pseudo algorithm outlined in
lines 4 to 8. Subsequently, the Curve Fit method is invoked
to analyze the two aforementioned subsets (line 9), enabling
the retrieval of the optimal function for a given performance

metric and working region (line 11 and 12). The Curve
Fit process, besides ascertaining the most suitable functions,
also provides the relevant fitted coefficients for each of the
selected functions (line 13). Furthermore, the Profiling System
is equipped with the capability of plotting these functions,
which in their entirety define the VNF profile (line 15 and
16).

IV. TESTING ENVIRONMENTS

Two different TEs have been set up and used together with
the TT to perform the experiments reported and described in
Section VI. The two TEs are built upon two testbeds that have
been designed and are currently used for different purposes:

• ADVA TE: It is built on top of a carrier-grade testbed
hosted at ADVA premises that is used for testing of
production-grade software.

• BONSAI TE: It is built on top of a testbed realized for
research and academic purposes, hosted in the premises
of BONSAI Lab of Politecnico di Milano.

In the following, we describe in detail the TEs and how
they have been set up.

A. ADVA Testing Environment

The ADVA TE is based on a commercial NFV solution,
called Ensemble [29], deployed on the testbed in ADVA’s
premises.

1) Hardware components: The ADVA TE is illustrated in
Fig. 3 and includes the following hardware components:

• Three Lanner 5210 servers acting as computing nodes,
equipped with Intel Atom C3958 CPUs with 16 Cores,
32 GB RAM and 512 GB SSD.

• A Cisco Nexus network switch, used to connect the
computing nodes and steer network traffic between VNFs
deployed on different computing nodes.

• An HP Proliant server, hosting the ADVA proprietary
software for ETSI-compliant NFV Management and Or-
chestration (MANO).

2) Software components: Concerning software, it is entirely
part of the ADVA’s Ensemble suite [29]. An important com-
ponent of the TE is the Connector [30]. It is deployed on each
computing node and acts as a virtual network Operating Sys-
tem. It provides not only cloud-native computing technology,
but also a virtual infrastructure manager based on Linux, KVM
and OpenStack [31] that implements all the functions related
to the virtualisation layer of the NFV Infrastructure (NFVI),
which includes the three computing nodes and the network
switch implemented in this work.

The adopted NFV Management and Orchestration software
component (ADVA MANO) is the heart of the TE8. It is
in charge of controlling the NFV Infrastructure (NFVI) and
manages the lifecycle of the VNFs and the deployment of
the SFCs. The sub-components of ADVA MANO are the

8The reader can find more information on ADVA MANO
in the following white paper (last access 14/04/2023):
https://www.adva.com/en/resources/resources-gated-page/reports/eantc-
adva-smartwan-using-6wind-vsr-with-intel

TROIA S. ET AL, COMPUTER NETWORKS, 2023 8

Fig. 3. ADVA testbed architectural components.

Controller, the Virtualization Director [32] and the Orches-
trator [33]. The three sub-components interact by means
of open and standard Application Programming Interfaces
(APIs). Specifically, the TE requires the functionalities of the
Virtualization Director and of the Orchestrator, while it does
not require those offered by the Controller.

The Virtualisation Director offers a single-cloud or multi-
cloud automated NFV service, end-to-end service visibility,
and performance management. It deals with the faults and
events generated by the Connector, offering troubleshooting
tools and management support.

The Orchestrator is an ETSI MANO-compliant solution
[34]. It provides both an NFV Orchestrator (NFVO) and a
generic VNF Manager (VNFM) and offers a single point of
entry for end-to-end network services and VNFs lifecycle
management, with features for the VNF on-boarding, network
service design and deployment. The front-end of the Ensemble
Orchestrator provides a web user interface, guaranteeing a
consistent exposure layer to the Operational Support System
(OSS).

B. BONSAI Testing Environment

The BONSAI TE is built upon a testbed composed of 12
computing nodes, interconnected between each other. The TE
is used by students and researchers for academic and research
purposes. It relies on a resource virtualisation environment
based on OpenStack [31] (Stein version), which handles all
the computing nodes and provides functionalities related to
instance creation, interconnection and resource allocation. By
following NFV MANO specifications, the BONSAI TE uses
OpenStack as a Virtual Infrastructure Manager (VIM) to assign
the required resources to the virtualized network services (i.e.,
VNFs and SFCs).

For the purposes of this work, a single computing node is
used to launch VNF instances and to host the Traffic Sender
and the Traffic Receiver. It is equipped with an Intel Xeon
E5-2620 v4 processor with 8 cores, and Ubuntu 18.04 LTS is
used as an Operating System.

CentOS VM

Traffic Sender Traffic ReceiverVNF under test (vRouter,
vFirewall)

CentOS VMVNF

Fig. 4. Stand-alone VNF testing scenario.

CentOS VM

Traffic Sender Traffic Receiver

SFC

VNF 1

SFC under test

CentOS VM
VNF 2

Fig. 5. SFC testing scenario.

C. Testing scenarios

For both TEs, if a single VNF has to be tested, three virtual
machines are instantated: one VM hosts the VNF Under Test
and two VMs, equipped with CentOS, act as Traffic Sender
and Traffic Receiver, respectively. We call this setup stand-
alone VNF testing scenario. If a SFC has instead to be tested,
and thus more than one VNF must be deployed, one VM
per chained VNF is instantiated. In this case, we referred to
it as SFC testing scenario. The two different scenarios are
illustrated in Fig. 4 and Fig. 5, and will be both investigated
in Section VI.

D. Differences between Testing Environments

As already pointed out, the two TEs are different in scope.
While the ADVA TE has been specifically set up to test
production-grade software artifacts, the BONSAI TE has been
created by exploiting open source software to allow students
and researchers carry on their academic projects.

Concerning their configuration, one of the main difference
is related to hyper-threading. The ADVA TE configuration
has hyper-threading disabled by default, ensuring a one-to-
one mapping between virtual CPUs and physical CPU cores.
This approach is taken to prevent any computational resource
competition among virtual CPUs that would result from as-
signing them to the same physical core. On the other hand,
the BONSAI TE configuration has hyper-threading enabled,
with virtual machine instances typically sharing computing
resources. This type of resource competition can be expected
to result in decreased VNF performance due to performance
inference, as previously documented in related work [35], [36]
and experimentally demonstrated in [37] and confirmed in
Section VI.

In general, such a performance interference makes us claim
that disabling hyper-threading should be always done when-
ever possible, i.e., when enough computational resources are
available in the virtualization system. This is the reason why
we decided to disable hyper-threading in the ADVA TE (where
more computational resources are available), but we did not
disable it in the BONSAI TE, which is a less-capable TE. In

TROIA S. ET AL, COMPUTER NETWORKS, 2023 9

TABLE I
VIRTUAL ROUTER FLAVORS.

Flavor Resource requirements
1 1 vCPU, 2 GB RAM, 10 GB Disk
2 2 vCPU, 2 GB RAM, 10 GB Disk
3 3 vCPU, 2 GB RAM, 10 GB Disk

TABLE II
VIRTUAL FIREWALL FLAVOR.

Flavor Resource requirements
1 2 vCPU, 6.5 GB RAM, 60 GB Disk

addition, another aspect should be considered. Hyper-threading
has a much worse impact on data-plane-intensive VNFs such
as those considered in this paper (i.e., virtual router and virtual
FW) than on control plane functions (e.g. Dynamic Host
Configuration Protocol, DHCP). So, also the type of VNFs
that have to be executed (i.e., data-plane-intensive or not)
should be taken into consideration by the network operator
when deciding whether hyper-threading should be disabled or
not in the virtualization system.

V. VNFS AND SFCS UNDER TEST

This Section describes the carrier-grade VNFs that have
been tested using the TT, with the goal to extrapolate common
trends occurring for CPU-bound VNFs. Specifically, the VNFs
Under Test are two carrier-grade functions, namely a virtual
router and a virtual firewall, which have also been replicated
and chained together following different SFC topologies.

A. Virtual Network Functions

1) Virtual router: The first considered VNF is the Mikrotik
proprietary virtual router named Mikrotik Cloud Hosted Router
[38]. It is feasible to designate different flavors for this VNF.
As specified in Table I, three distinct flavors have been defined.
These flavors differ in the number of assigned virtual CPUs,
providing the ability to assess the performance of the virtual
router under varying computational constraints.

2) Virtual firewall: The second VNF considered is a propri-
etary virtual firewall by Palo Alto Networks [39], named VM-
100 and belonging to the VM-series. The VM-series has been
developed as a set of solutions to guarantee an efficient and
advanced threat prevention in a virtual environment, reaching
the same performance as next-generation firewall hardware
appliances. With respect to the virtual router, the adopted
business model is different. Only one flavor can be used for the
VM-100, as shown in the Table II. For more virtual resources,
a more powerful virtual firewall has to be provided (e.g. VM-
200).

B. Service Functions Chains

Two types of SFCs are considered. The first one, illustrated
in Fig. 6, is a simple linear chain (SFC linear in brief)
concatenating a virtual router and a virtual firewall. This is the
typical SFC that can be adopted to access a De-Militarized

CentOS VM 1

Virtual Router Virtual Firewall

CentOS VM 2

Fig. 6. Linear Service Function Chain (SFC linear).

CentOS VM 1

Virtual Router 1

Virtual Firewall 1

Virtual Firewall 2

Virtual Router 2

CentOS VM 2

Fig. 7. Service Function Chain with split (SFC split)

Zone (DMZ). All the traffic sequentially traverses the two
VNFs in a given order.

The second one is illustrated in Fig. 7. It is characterized
by two branches, starting and ending in two different virtual
routers, and each branch includes a virtual firewall. Traffic
load is balanced by the first virtual router between the two
branches, and merged towards the receiver by the second
virtual router. A SFC of this type can be adopted when a single
virtual firewall does not have enough computational resources
to process all the incoming traffic. In brief, we will call it
SFC split. The resource requirements for the VNFs of each
of the two SFCs are listed in Table III. Note that SFC split
is defined by taking as an inspiration the results obtained in
[40] [41], where multiple VNFs can be executed in parallel.
The only difference with respect to those works is that we
consider the particular case where the VNFs that are executed
in parallel are of the same type (i.e., virtual firewall), but
all the considerations made later in this paper can easily be
generalized to adhere to the SFCs considered in [40] [41].

VI. EXPERIMENTAL EVALUATION

In this Section we report the results obtained by running
the proposed TT (Section III) on the two considered TEs
(Section IV) with respect to the VNFs and SFCs introduced in
Section V. We first report the results obtained by running the
Monitoring System sub-component, then we focus on VNF
profiling as performed by the Profiling System. The goal is to
characterize the considered VNFs and SFCs and to extrapolate
some common trends that occur for (chained) CPU-bound
VNFs.

A. Monitoring System - VNF/SFC Performance Characteriza-
tion

We used the Monitoring System to test the VNFs and
SFCs Under Test by generating UDP traffic. We conducted
a series of experiments on a single VNF configuration. To
capture a comprehensive range of possible input rates, we

TROIA S. ET AL, COMPUTER NETWORKS, 2023 10

TABLE III
SFCS FLAVORS.

SFC Resource requirements (per VNF)

Linear 1 Virtual router
1 Virtual firewall

1 vCPU, 2 GB RAM, 10 GB Disk
2 vCPU, 6.5 GB RAM, 60 GB Disk

Split 2 Virtual router
2 Virtual firewall

1 vCPU, 500 MB RAM, 10 GB Disk
2 vCPU, 6.5 GB RAM, 60 GB Disk

Packet lossAverage delay

Input rate [Gbit/s]
(a)

Input rate [Gbit/s]
(b)

Input rate [Gbit/s]
(c)

Input rate [Gbit/s]
(d)

O
ut

pu
t r

at
e

[G
bi

t/
s]

Throughput CPU consumption

0.000

0.002

0.004

0.006

Av
er

ag
e

de
la

y
[s

]

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0

10

20

30

40

Pa
ck

et
s

lo
st

 [%
]

1

2

0
20

40

60

80

100

CP
U

 c
on

su
m

pt
io

n
[%

]

Fig. 8. Virtual router performance on ADVA TE (packet size: 1460 bytes).

specified a minimum and maximum range (1000, 80000 pps9),
while also imposing a pre-determined step size between each
measurement point (1000 pps). In order to obtain accurate and
precise measurement data, each input rate was sustained for
a constant time period of 30 seconds. During this interval,
we recorded samples of critical performance metrics such as
throughput, packet loss, average delay, and CPU consumption.
The measurement outcomes were derived by computing the
mean values of these performance metrics over the 30-second
observation period. In the following, we report the obtained
results.

1) Virtual router:
a) ADVA TE: The results for the virtual router are

reported in Fig. 8. Flavor 1 (see Table I) is used and the
packet size for UDP-generated traffic is set to 1460 bytes. The
analysis of the collected measurements confirms the existence
of a different behavior in the two regions (no CPU saturation
and CPU saturation). In the no CPU saturation region the
VNF does not shows any relevant packet loss, the throughput
increases linearly with the input rate and the end-to-end delay
is almost constant and below 1ms. Moreover, also the CPU
consumption increases almost linearly with the input rate. In
the CPU saturation region, the CPU is always consumed at
100% of its capacity and VNF performance degrades. The
average delay shows a sudden steep increase (often higher
than 6ms), and the VNF starts dropping a relevant amount of
packets. Such a high packet loss is also related to throughput

9pps: packet per second

Packet lossAverage delay

Throughput CPU consumption

Input rate [Gbit/s]
(a)

Input rate [Gbit/s]
(b)

Input rate [Gbit/s]
(c)

Input rate [Gbit/s]
(d)

O
ut

pu
t r

at
e

[G
bi

t/
s]

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

Av
er

ag
e

de
la

y
[s

]

0.000

0.002

0.004

0.006

0

20

40

60

Pa
ck

et
s

lo
st

 [%
]

1

2

0

25

50

75

100

0

CP
U

 c
on

su
m

pt
io

n
[%

]

512B
768B
1024B
1300B
1460B

Fig. 9. Virtual router performance on ADVA TE considering different packet
sizes.

reduction, which is more evident as the input rate increases.
The black vertical line depicted in each sub-figure, at an input
rate of around 2.5 Gbit/s, shows the CPU saturation break-
point. This break-point gives an indication about the maximum
input rate that can be handled by the virtual router without any
relevant performance degradation.

Packet size variation. We used the TT to evaluate how
a packet size variation impacts on virtual router performance.
Results are shown in Fig. 9. Samples have been collected with
packet sizes of 512 bytes, 768 bytes, 1024 bytes, 1300 bytes
and 1460 bytes. All the other parameters have been set as in the
previous experiment. It can be seen that the CPU saturation
break-point is at lower input rates for smaller packets. This
happens as a consequence of the increase in the number of
packets to be processed at the same data rate and it is not
surprising: the more packets need to be processed, the more
CPU needs to be consumed. This important result shows that
the average expected packet size is another crucial parameter
to be considered while choosing the best configuration for a
VNF.

Flavor variation. We performed tests by varying the flavor
type (see Table I) of the VM where the virtual router is
executed. In this way it is possible to evaluate the impact of
the amount of assigned virtual resources on VNF performance.
The results are shown in Fig. 10, and confirm the strict
dependency between amount of assigned virtual resources and
VNF performance, showing the advantages in assigning more
virtual resources. Specifically, being the virtual router a CPU-
bound VNF, what really matters is the number of assigned
vCPUs for each flavor (i.e., 1, 2 and 3 respectively). We
performed tests by varying virtual memory and virtual disk
but, as expected, performance is not significantly affected and
thus results are not reported.

By observing the differences between the 1 vCPU (flavor 1)

TROIA S. ET AL, COMPUTER NETWORKS, 2023 11

Fig. 10. Virtual router performance on ADVA TE considering different VNF
flavors (packet size: 1460 bytes).

and 2 vCPU (flavor 2) cases, it can be noticed that an increase
on the number of virtual CPUs reflects to a VNF performance
improvement, and that the VNF is capable of guaranteeing
no losses for a higher input rates. The mostly-affected metric
is the end-to-end delay. At low input rates, it is almost the
same for 1 vCPU and 2 vCPU, but for higher input rates it is
consistently lower in the 2 vCPU case. Also packet loss and
throughput experience a lower degradation when 2 vCPU are
allocated.

However, some unexpected behavior occurs for the 3 vCPU
case, as the virtual router becomes unstable in the CPU satu-
ration region. What can be seen is that the CPU consumption
never overcomes 200%, meaning that the equivalent of two
full vCPUs is utilized at most. This is due to the how virtual
router is implemented, which is ineffective in balancing the
load among the vCPUs. This is confirmed by looking at Fig.
11, which plots the average CPU consumption of each vCPU
in the 3 vCPU case, and discloses how the occupation is well
below 100% for vCPU #2 and vCPU #3, while it is always
close to 100% for vCPU #1.

In the no CPU saturation region some interesting behavior
is seen concerning end-to-end delay, as shown in Fig. 12: it
experiences a slight increase in 2 vCPU and 3 vCPU with re-
spect to 1 vCPU. This happens because of the upscaling costs
that incur when a VNF has to balance the load across multiple
CPU cores in multi-core implementations, as investigated in
a previous paper [35]. In line with [35], Fig. 12 confirms an
almost linear dependence between the number of adopted CPU
cores and the average delay.

Bursty traffic. We performed various experiments with
different duty cycles and input rates for the ON period. The
results are consistent with what shown in the previous sub-
sections. In OFF periods, the CPU consumption is negligible,
while in ON periods the behavior depends on whether the
input rate belongs to the CPU saturation or no CPU saturation
region.

Fig. 11. Breakdown of CPU consumption for the 3 vCPU case and virtual
router.

Fig. 12. Average delay in the no CPU saturation region for virtual router.

b) BONSAI TE: All the previously described experi-
ments have been performed on the ADVA TE. We tested the
virtual router also on the BONSAI TE, choosing as input
parameters the same as for the tests reported in Fig. 8. In the
BONSAI TE the vCPUs assigned to each VM (see Fig. 4) are
physically shared by exploiting hyper-threading, which causes
resource contention. This is needed because of the limited
computational resources available in the computing node. As
already mentioned, hyper-threading is instead not adopted in
the ADVA TE due to the greater processing availability, which
makes it possible a one-to-one mapping between vCPUs and
physical cores (see Section IV-D for a deeper discussion).

Results are shown in Fig. 13. We can easily identify the
CPU saturation break-point, which is at around 0.87 Gbit/s and
around three times lower than that experienced on the ADVA
TE. Additionally, worse performance is generally experienced.
This is not surprising, being the BONSAI TE based on
general-purpose open source software and exploiting hyper-

TROIA S. ET AL, COMPUTER NETWORKS, 2023 12

Fig. 13. Virtual router performance on BONSAI TE (Packet size: 1460 bytes).

Fig. 14. Virtual firewall performance on ADVA TE (packet size: 1460 bytes).

threading. This confirms the need of accurately assessing the
VNF performance on the specific NFV infrastructure where
it will be deployed so that no service degradation, given
the expected input traffic, is ensured. A similar performance
degradation has been experienced also for virtual firewall and
chained VNFs. However, we do not include additional results
on the BONSAI TE due to space limitations. All the following
tests have been performed on the ADVA TE.

B. Virtual firewall

We tested the virtual firewall by generating UDP traffic
(with packet size set to 1460 bytes) and test duration of 30
seconds. Fig. 14 shows the obtained results. Even though the
functionalities offered by a virtual firewall are very different
by those offered by a virtual router, a similar trend is experi-
enced for each performance metric and for CPU consumption.
However, we should note that both throughput and delay have
different slopes compared to virtual router. The average delay

Fig. 15. SFC linear performance on ADVA TE (packet size: 1460 bytes).

shows a discontinuity around the CPU saturation break-point,
leading to much higher latency in the CPU saturation region
(around 200ms) with respect to no CPU saturation (around
1ms). Instead, throughput stabilizes around a value (close to
1.7 Gbit/s), which appears to be the maximum achievable.
Another difference is the much lower input rate at which the
CPU saturation break-point occurs, i.e., 1.5 Gbit/s instead of
2.5 Gbit/s. Clearly, a virtual firewall is more complex than a
virtual router, as more operations need to be performed on
each packet. This reflects on a higher CPU consumption at a
same input rate.

The performance difference between the virtual router and
the virtual firewall is an important indicator on how performing
a detailed VNF characterization is important to avoid service
disruptions due to incorrect VNF dimensioning given an
expected average input rate.

C. Service Function Chains

In this subsection we perform SFC performance characteri-
zation using the Monitoring System for the two SFCs specified
in Section V.

a) SFC linear (Fig. 6): Fig. 15 reports the SFC per-
formance when a SFC linear is deployed. Concerning CPU
consumption, a comparison between each of the two VNFs
deployed in the stand-alone VNF testing scenario (see Fig.
4) and in the SFC testing scenario (see Fig. 5) is reported.
Concerning the performance metrics, the figure reports the
value in the stand-alone VNF testing scenario, for each of
the two VNFs, and for the SFC testing scenario.

The CPU consumption of the two VNFs follows almost
exactly the same profile as in the stand-alone VNF testing
case. This is due to one-to-one mapping between vCPUs and
physical CPUs in the ADVA TE, which guarantees no resource
contention. For what concerns end-to-end delay, throughput
and packet loss, the SFC performance is very similar to the
performance of virtual firewall. As the virtual firewall has
its CPU saturation break-point at lower input rates than the

TROIA S. ET AL, COMPUTER NETWORKS, 2023 13

Fig. 16. Average delay in the no CPU saturation region for SFC linear,
compared to the stand-alone VNF testing scenarios.

virtual router, the saturation break-point of the linear chain is
naturally determined by the virtual firewall. As a consequence,
the packet loss and throughput of the chain follow exactly the
same trend experienced by the virtual firewall. The average
end-to-end delay shows instead an additive behavior, as better
shown in Fig. 16, which illustrates the average delay of SFC
linear in the no CPU saturation zone, compared to that
obtained in the stand-alone VNF scenario.

It is than clear that, in the case of deployment of linear
chains of CPU-bound VNFs, throughput and packet loss are
dominated by the CPU-hungrier VNF, while the delay is the
sum of the delays introduced by any chained VNF, plus any
transmission and propagation delay (negligible in our tests).

b) SFC split (Fig. 7): Since the virtual firewall is the
dominating VNF in SFC linear, a possible strategy to improve
SFC performance could be deploying two parallel instances of
such a VNF, as done for SFC split. However, by scaling out the
virtual firewall an additional level of complexity is introduced,
due to the need for traffic load balancing at the ingress virtual
router and recombination at the egress virtual router. To avoid
performance degradation, the virtual routers must be carefully
dimensioned based on the expected amount of traffic to be
processed.

Fig. 17 shows the CPU consumption as measured for the
ingress virtual router and one of the Firewall in the SFC split
and compared to the VNF stand-alone case, with focus on the
no CPU saturation region. Very similar results are obtained
for the other virtual firewall and virtual router.

As the input traffic is split equally among the two virtual
firewall, their CPU consumption is reduced (slightly less
than halved). Conversely, the virtual router CPU consumption
slightly increases due to the additional load balancing opera-
tions that have to be performed. As we focused our tests on
the no CPU saturation region, no packet loss is experienced
and the throughput coincides with the input rate, as already
extensively showed in the previous subsections. Also in this
case, the average delay shows an additive behaviour, and it is
slightly higher than in the case of SFC linear. In fact, one more

Fig. 17. Virtual router and virtual firewall CPU consumption for Split SFC.

VNF needs to be traversed by any packet. We do not report
graphs for the performance metrics due to space constraints.

D. Profiling System - VNF Profiling

In this subsection we test the capabilities of the Profiling
System to profile VNFs in terms of delay, packet loss and
throughput as a function of the input rate. The goal is to define
analytical models that can be used to predict the behavior
of the VNF given an expected amount of input traffic. We
focus our evaluation on the virtual router and virtual firewall
VNFs whose performance has been already characterized in
the previous subsection.

1) Virtual router:
a) Packet loss: The Profiling System models the packet

loss by choosing the following profiling functions:
• In the no CPU saturation region, an exponential function

in the form fpacket_loss,nonsat(r) = aeb(r−c) is chosen,
where a, b and c are the scaling factors and e the Euler’s
number. r is the input rate.

• In the CPU saturation region, it is modelled by the
function fpacket_loss,sat(r) = 100·(1− d

r−g) where d and
g are the scaling factors. Being the packet loss expressed
as a percentage, the maximum value it can reach is 100%.

Hence, the analytical model used to profile packet loss of
the virtual router is the following:

fpacket_loss,V R(r) =

{
aeb(r−c) No CPU saturation

100 · (1− d
r−g) CPU saturation

(2)
The left-hand side of Fig. 18 reports the profile as obtained

using the Curve Fit method, together with the samples using
by the fitting method, considering the flavor #1 on the ADVA
TE. The relative error between estimated and real value, for
the collected samples, is always below 1.5% for any of the two
regions. This confirms that the analytical model well profiles
the packet loss of the VNF. The right-hand side of Fig. 18
shows the profile obtained from the samples collected on the

TROIA S. ET AL, COMPUTER NETWORKS, 2023 14

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Input rate [Gbit/s]

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Input rate [Gbit/s]

(b)

40

5

0

40

0

35

30

25

20

15

10

5

Pa
ck

et
s

lo
st

 [%
]

35

30

25

20

15

10Pa
ck

et
s

lo
st

 [%
]

Fig. 18. Packet loss profile for the Virual Router on the ADVA TE (left) and
BONSAI TE (right) (flavor #1, packet size: 1460 bytes).

TABLE IV
PACKET LOSS PROFILING FUNCTIONS’ COEFFICIENTS.

Testing Environment
Coefficients

No CPU saturation
Coefficients

CPU saturation
a b c d g

ADVA 8.503e-17 14.95 0 1.722 0.754
BONSAI 0.042 6.999 0 0.569 0.143

BONSAI TE. Even though the relative error is higher for some
points (around 4%), the two functions described above are
still the ones selected by the Profiling System. The values of
the coefficients of the selected functions, for both TEs, are
reported in Table IV.

b) Average delay: The following functions are selected
by the Profiling System to model the average delay:

• In the no CPU saturation region an exponential function
is chosen, as the one adopted to model packet loss in the
previous paragraph.

• In the CPU saturation region, the linear function
fsat,delay(r) = dr + g is adopted, where d and g are
the gradient and the intercept respectively.

Hence, the analytical model used to profile the average
delay of the virtual router is the following:

fdelay,V R(r) =

{
a+ eb(r−c) No CPU saturation

dr + g CPU saturation
(3)

The left-hand side of Fig. 19 reports the profile of the
average delay on the ADVA TE. The relative error is always
below 5% except around the CPU saturation break-point where
it more pronounced (around 25%). Defining the profile of any
performance metric around the break-point is challenging due
to the very different behavior in the two regions. However,
none of the other available profiling functions fitted better
than the two considered. On the right-hand side the profile
obtained from the samples collected on the BONSAI TE is
shown. In this case, it is important to see that the relative
error is a bit higher in the CPU saturation region (around
10%), and that the behavior is super-linear considering all the
samples as a whole. In this case, modelling the profile using an
exponential function on the the whole set of collected sample

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Input rate [Gbit/s]

(a)

0.00 0.25 0.50 0.75 1.00
Input rate [Gbit/s]

(b)

1

0

7

6

5

4

3

2Av
er

ag
e

de
la

y
[m

s]

5

0

25

20

15

10

Av
er

ag
e

de
la

y
[m

s]

Fig. 19. Delay profile for the Virual Router on the ADVA TE (left) and
BONSAI TE (right) (flavor #1, packet size: 1460 bytes).

TABLE V
AVERAGE DELAY PROFILING FUNCTIONS’ COEFFICIENTS.

Testing Environment
Coefficients

No CPU saturation
Coefficients

CPU saturation
a b c d g

ADVA 12.697 2.484 0.272 1.286 2.214
BONSAI 8.999 0.595 7.15e-26 70.971 -51.028

would have led to a better fit, but this is a corner case not
experienced for any other metric and any other set up, so it
cannot be generalized. The values of the coefficients of the
selected functions are reported in Table V.

c) Throughput: The throughput is modelled by the Pro-
filing System with a linear function for both the no CPU
saturation and CPU saturation regions. The analytical model
used to profile the throughput of the VNF thus is:

fthroughput,V R(r) =

{
ar + b No CPU saturation

cr + d CPU saturation
(4)

The profile obtained by applying the Curve Fit method to
the throughput samples of the virtual router on the ADVA TE
are illustrated in the right-hand side of Fig. 20. Larger errors
in prediction are observed at higher input rates, when the VNF
enters the CPU saturation region. The right-hand side of Fig.
20 shows the profile as obtained from the samples collected on
the BONSAI TE. The profile well approximates the collected
samples, with relative errors that are just slightly worse than
those experienced on the ADVA TE. The functions’ coefficient
values are reported in Table VI.

d) Flavor variation: Having some models describing
how the VNF reacts under an increasing traffic load is benefi-
cial to decide the best flavor for the VM hosting a VNF, given
the expected amount of input traffic. For the virtual router, the
behaviour observed with flavor #1 (1 vCPU) and flavor #2 (2
vCPU) can be compared starting from the computed profiling
models, showing how more assigned resources translate to
better VNF performance. This is shown in Fig. 21. In the
past subsections we did not show in detailing how packet
loss, average delay and throughput are profiled for flavor #2.
However, it can be seen that different profiling functions are
chosen for packet loss by the Profiling System with respect to
flavor #1.

TROIA S. ET AL, COMPUTER NETWORKS, 2023 15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Input rate [Gbit/s]

(a)

0.00 0.25 0.50 0.75 1.00
Input rate [Gbit/s]

(b)

0.0

2.5

2.0

1.5

1.0

O
ut

pu
t r

at
e

[G
bi

t/
s]

0.5

0.1

0.6

0.5

0.4

0.3

O
ut

pu
t r

at
e

[G
bi

t/
s]

0.2

0.7

Fig. 20. Throughput profile for the Virual Router on the ADVA TE (left) and
BONSAI TE (right) (flavor #1, packet size: 1460 bytes).

TABLE VI
THROUGHPUT PROFILING FUNCTIONS’ COEFFICIENTS.

Testing Environment
Coefficients

No CPU saturation
Coefficients

CPU saturation
a b c d

ADVA 0.988 0.014 -0.245 3.046
BONSAI 0.943 0.020 -0.167 0.828

2) Virtual firewall: The Profiling System was also used to
profile the virtual firewall from the samples collected on the
ADVA TE. The results are illustrated in Fig. 22. It is important
to note that the profiling functions selected by the Profiling
System are among the ones selected for the virtual router.
Even though more investigations are needed to generalize our
finding, it seems that CPU-bound VNFs’ performance profiles
can be modelled using a very limited set of profiling functions.

VII. CONCLUSION

VNFs have the potential to revolutionize the way we man-
age and optimize networks, but their performance can vary
greatly depending on a number of factors such as resource
configuration and traffic load. In addition, the underlying
hardware, virtualization layer, and number of VNFs co-located
can greatly impact the overall QoS experienced. As a re-
sult, deploying chains of VNFs, known as Service Chains,
can sometimes lead to performance degradation due to their
virtualized nature. To fully harness the power of VNFs, it’s
crucial that we understand and address these performance
challenges. This paper delves into understanding the impact
of resource allocation, consumption, and traffic load on the
performance of VNFs through various performance metrics.
Thanks to the use of real-world network testbeds, we were
able to provide a detailed analysis of how different factors
affect VNF performance, and to develop analytical functions
that can accurately describe this impact. We found that the
CPU was the main bottleneck at the VNF layer, and that
the VNFs performance degradation was highly dependent on
traffic features. The findings show that by adding more vCPUs
to the VNF, an improvement is registered both in the saturation
break-point position and also in the average delay experienced.
However, some costs must be faced due to the load balancing
procedure and the introduction of instability in the observed
VNF behavior. We believe that the findings of this work can

Fig. 21. Comparison between the profiles obtained for flavor #1 and flavor
#2 (virtual router).

Fig. 22. Performance metrics profile for the Virual Firewall on the ADVA
TE (flavor #1, packet size: 1460 bytes).

be used as a support during the deployment of SFCs in various
network contexts. As a next step, we plan to analyze how the
performance of the VNFs is affected by compute-intensive
tasks across all computing cores. This analysis will factor in
variables such as cache memory usage, hardware temperature,
and memory sharing criteria that are dependent on specific
hardware and software configurations. By doing so, we will
provide an accurate evaluation of the impact of compute-
intensive tasks on VNF performance.

REFERENCES

[1] I. Group, “Network Function Virtualization (NFV) Market: Global
Industry Trends, Share, Size, Growth, Opportunity and Forecast
2022-2027. [Online] https://www.giiresearch.com/report/imarc1120187-
network-function-virtualization-nfv-market-global.html,” IMARC, Tech.
Rep., 2022.

TROIA S. ET AL, COMPUTER NETWORKS, 2023 16

[2] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, and R. Boutaba, “Delay-
aware vnf placement and chaining based on a flexible resource allocation
approach,” in 2017 13th International Conference on Network and
Service Management (CNSM), 2017, pp. 1–7.

[3] G. Garg, V. Reddy, A. Antony Franklin, and B. R. Tamma, “Davis:
A delay-aware vnf selection algorithm for service function chaining,”
in 2019 11th International Conference on Communication Systems
Networks (COMSNETS), 2019, pp. 436–439.

[4] M. Falkner, A. Leivadeas, I. Lambadaris, and G. Kesidis, “Performance
analysis of virtualized network functions on virtualized systems ar-
chitectures,” in 2016 IEEE 21st International Workshop on Computer
Aided Modelling and Design of Communication Links and Networks
(CAMAD), 2016.

[5] W. Konikiewicz and M. Markowski, “Analysis of performance and
efficiency of hardware and software firewalls,” Journal of Applied
Computer Science Methods, vol. 9, 2017.

[6] N. Ghrada, M. F. Zhani, and Y. Elkhatib, “Price and performance of
cloud-hosted virtual network functions: Analysis and future challenges,”
in 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), 2018, pp. 482–487.

[7] S. Van Rossem, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester,
“Profile-based resource allocation for virtualized network functions,”
IEEE Transactions on Network and Service Management, vol. 16, no. 4,
pp. 1374–1388, 2019.

[8] A. Mestres, E. Alarcón, and A. Cabellos, “A machine learning-based
approach for virtual network function modeling,” in 2018 IEEE Wireless
Communications and Networking Conference Workshops (WCNCW),
2018.

[9] S. Schneider, N. P. Satheeschandran, M. Peuster, and H. Karl, “Machine
learning for dynamic resource allocation in network function virtualiza-
tion,” in 2020 6th IEEE Conference on Network Softwarization (NetSoft),
2020.

[10] M. Peuster and H. Karl, “Understand your chains: Towards performance
profile-based network service management,” in 2016 Fifth European
Workshop on Software-Defined Networks (EWSDN), 2016, pp. 7–12.

[11] ——, “Profile your chains, not functions: Automated network service
profiling in devops environments,” in 2017 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN),
2017, pp. 1–6.

[12] S. Dräxler, M. Peuster, M. Illian, and H. Karl, “Generating resource and
performance models for service function chains: The video streaming
case,” in 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft), 2018, pp. 318–322.

[13] S. Van Rossem, T. Soenen, W. Tavernier, D. Colle, M. Pickavet, and
P. Demeester, “Adaptive amp; learning-aware orchestration of content
delivery services,” in 2020 6th IEEE Conference on Network Softwariza-
tion (NetSoft), 2020, pp. 77–84.

[14] S. Van Rossem, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester,
“Vnf performance modelling: From stand-alone to chained topologies,”
Computer Networks, vol. 181, p. 107428, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128620311178

[15] J. Nam, J. Seo, and S. Shin, “Probius: Automated approach for vnf
and service chain analysis in software-defined nfv,” in Proceedings of
the Symposium on SDN Research, ser. SOSR ’18. New York, NY,
USA: Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3185467.3185495

[16] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “Nfv-vital: A framework
for characterizing the performance of virtual network functions,” in
2015 IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN), 2015, pp. 93–99.

[17] R. V. Rosa, C. E. Rothenberg, and R. Szabo, “Vbaas: Vnf benchmark-
as-a-service,” in 2015 Fourth European Workshop on Software Defined
Networks, 2015, pp. 79–84.

[18] R. V. Rosa, C. Bertoldo, and C. E. Rothenberg, “Take your vnf to the
gym: A testing framework for automated nfv performance benchmark-
ing,” IEEE Communications Magazine, vol. 55, no. 9, pp. 110–117,
2017.

[19] R. V. Rosa and C. E. Rothenberg, “Automated vnf testing with gym:
A benchmarking use case,” in 2018 Network Traffic Measurement and
Analysis Conference (TMA), 2018, pp. 1–2.

[20] N. Schmitt, J. von Kistowski, and S. Kounev, “Towards a scalability and
energy efficiency benchmark for vnf,” in Performance Evaluation and
Benchmarking for the Analytics Era, R. Nambiar and M. Poess, Eds.
Cham: Springer International Publishing, 2018, pp. 41–54.

[21] Y. Sharma, M. G. Khan, J. Taheri, and A. Kassler, “Performance bench-
marking of virtualized network functions to correlate key performance

metrics with system activity,” in 2020 11th International Conference on
Network of the Future (NoF), 2020, pp. 73–81.

[22] G. Piao, P. K. Nicholson, and D. Lugones, “Env2vec: Accelerating vnf
testing with deep learning,” in Proceedings of the Fifteenth European
Conference on Computer Systems, ser. EuroSys ’20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3342195.3387525

[23] I. J. Sanz, D. M. F. Mattos, and O. C. M. B. Duarte, “Sfcperf:
An automatic performance evaluation framework for service function
chaining,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium, 2018, pp. 1–9.

[24] A. Botta, A. Dainotti, and A. Pescapè, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[25] D. Emma, A. Pescape, and G. Ventre, “Analysis and experimentation
of an open distributed platform for synthetic traffic generation,” in
Proceedings. 10th IEEE International Workshop on Future Trends of
Distributed Computing Systems, 2004. FTDCS 2004., 2004, pp. 277–
283.

[26] A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your software-based
traffic generator?” IEEE Communications Magazine, vol. 48, no. 9, pp.
158–165, 2010.

[27] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre, “D-itg
distributed internet traffic generator,” in First International Conference
on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceed-
ings., 2004, pp. 316–317.

[28] V. Sit, M. Poulin-Costello, and W. Bergerud, Catalogue of curves for
curve fitting. Citeseer, 1994.

[29] “Ensemble Suite, [online] https://www.adva.com/en/resources/downloads/data-
sheets/ensemble-cloud-suite.”

[30] “Ensemble Connector, [online] https://www.adva.com/en/products/network-
virtualization/ensemble-connector.”

[31] “OpenStack, [online] https://www.openstack.org/.”
[32] “Ensemble Director, [online] https://www.adva.com/en/products/network-

virtualization/ensemble-virtualization-director.”
[33] “Ensemble Orchestrator, [online] https://www.adva.com/en/products/network-

virtualization/ensemble-orchestrator.”
[34] L. Mamushiane, A. A. Lysko, T. Mukute, J. Mwangama, and Z. D. Toit,

“Overview of 9 open-source resource orchestrating etsi mano compliant
implementations: A brief survey,” in 2019 IEEE 2nd Wireless Africa
Conference (WAC), 2019.

[35] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on
service chain placement in network functions virtualization,” in 2015
IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN), 2015, pp. 191–197.

[36] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware vnf place-
ment for service-customized 5g network slices,” in IEEE INFOCOM
2019 - IEEE Conference on Computer Communications, 2019, pp. 2449–
2457.

[37] C. Zeng, F. Liu, S. Chen, W. Jiang, and M. Li, “Demystifying the
performance interference of co-located virtual network functions,” in
IEEE Conference on Computer Communications (INFOCOM), 2018.

[38] “Mikrotik CHR, https://wiki.mikrotik.com/wiki/Manual:CHR.”
[39] “Palo Alto Networks Firewall VM Series,

https://docs.paloaltonetworks.com
/vm-series.html.”

[40] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network
function parallelism in nfv,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, 2017, p. 43–56.

[41] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh,
and Z.-L. Zhang, “Parabox: Exploiting parallelism for virtual network
functions in service chaining,” in Proceedings of the Symposium on SDN
Research, 2017, p. 143–149.

